680 results for search: %7B%EC%95%A0%EC%9D%B8%EB%A7%8C%EB%93%A4%EA%B8%B0%7D%20WWW%E2%80%B8TADA%E2%80%B8PW%20%20%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%83%81%ED%99%A9%EA%B7%B9%20%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%84%B1%EC%83%81%EB%8B%B4%D0%B2%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%84%B1%EC%9D%B8%E2%86%95%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%84%B1%EC%9D%B8%EC%89%BC%ED%84%B0%E3%88%A6%E3%81%B6%E6%A3%BCtranscend/feed/content/colombia/dcede2009-28 (1).pdf
The causal impact of bail on case outcomes for indigent defendants in New York City
Kristian Lum, Erwin Ma and Mike Baiocchi (2017). The causal impact of bail on case outcomes for indigent defendants in New York City. Observational Studies 3 (2017) 39-64. 31 October 2017. © 2017 Institute of Mathematical Statistics.
The Case Against a Golden Key
Patrick Ball (2016). The case against a golden key. Foreign Affairs. September 14, 2016. ©2016 Council on Foreign Relations, Inc. All Rights Reserved.
Limitations of mitigating judicial bias with machine learning
Kristian Lum (2017). Limitations of mitigating judicial bias with machine learning. Nature. 26 June 2017. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Human Behavior. DOI 10.1038/s41562-017-0141.
HRDAG Wins the Rafto Prize
Courts and police departments are turning to AI to reduce bias, but some argue it’ll make the problem worse
Kristian Lum: “The historical over-policing of minority communities has led to a disproportionate number of crimes being recorded by the police in those locations. Historical over-policing is then passed through the algorithm to justify the over-policing of those communities.”
Kosovo 1999 – Using MSE to Examine Political Claims
An Award for Anita Gohdes
Guatemala’s Bol de la Cruz Found Guilty
Changes at HRDAG
First Things First: Assessing Data Quality Before Model Quality.
Anita Gohdes and Megan Price (2013). Journal of Conflict Resolution, Volume 57 Issue 6 December 2013. © 2013 Journal of Conflict Resolution. All rights reserved. Reprinted with permission of SAGE. [online abstract]DOI: 10.1177/0022002712459708.
In Syria, Uncovering the Truth Behind a Number
Huffington Post Politics writer Matt Easton interviews Patrick Ball, executive director of HRDAG, about the latest enumeration of killings in Syria. As selection bias is increasing, it becomes harder to see it: we have the “appearance of perfect knowledge, when in fact the shape of that knowledge has not changed that much,” says Patrick. “Technology is not a substitute for science.”
New Report Raises Questions Over CPD’s Approach to Missing Persons Cases
In this video, Trina Reynolds-Tyler of Invisible Institute talks about her work with HRDAG on the missing persons project in Chicago and Beneath the Surface.
Data ‘hashing’ improves estimate of the number of victims in databases
But while HRDAG’s estimate relied on the painstaking efforts of human workers to carefully weed out potential duplicate records, hashing with statistical estimation proved to be faster, easier and less expensive. The researchers said hashing also had the important advantage of a sharp confidence interval: The range of error is plus or minus 1,772, or less than 1 percent of the total number of victims.
“The big win from this method is that we can quickly calculate the probable number of unique elements in a dataset with many duplicates,” said Patrick Ball, HRDAG’s director of research. “We can do a lot with this estimate.”
Update on Work in Guatemala and the AHPN
Communiqué de presse, Tchad, January 2010
Contact Us
Lies, Damned Lies and Official Statistics
Recognising Uncertainty in Statistics
In Responsible Data Reflection Story #7—from the Responsible Data Forum—work by HRDAG affiliates Anita Gohdes and Brian Root is cited extensively to make the point about how quantitative data are the result of numerous subjective human decisions. An excerpt: “The Human Rights Data Analysis Group are pioneering the way in collecting and analysing figures of killings in conflict in a responsible way, using multiple systems estimation.”