716 results for search: %EB%A7%88%EC%BC%80%ED%8C%85%EC%A0%84%EB%AC%B8%E2%99%82%ED%85%94%EA%B7%B8adgogo%E2%99%82%EB%8B%A8%EA%B5%AC%EB%8F%99%ED%98%B8%EC%8A%A4%ED%8A%B8%EB%B0%94%E3%83%AD%EB%A7%88%EC%BC%80%ED%8C%85%E2%94%9E%EC%A0%84%EB%AC%B8%18%EB%8B%A8%EA%B5%AC%EB%8F%99%E5%B0%A3%ED%98%B8%EC%8A%A4%ED%8A%B8%EB%B0%94%E5%B0%A3interjectional/feed/rss2/chad-photo-essay
At Toronto’s Tamil Fest, human rights group seeks data on Sri Lanka’s civil war casualties
Earlier this year, the Canadian Tamil Congress connected with HRDAG to bring its campaign to Toronto’s annual Tamil Fest, one of the largest gatherings of Canada’s Sri Lankan diaspora.
Ravichandradeva, along with a few other volunteers, spent the weekend speaking with festival-goers in Scarborough about the project and encouraging them to come forward with information about deceased or missing loved ones and friends.
“The idea is to collect thorough, scientifically rigorous numbers on the total casualties in the war and present them as a non-partisan, independent organization,” said Michelle Dukich, a data consultant with HRDAG.
How a Data Tool Tracks Police Misconduct and Wandering Officers
Sierra Leone TRC Data and Statistical Appendix
Syria 2012 – Modeling Multiple Datasets in an Ongoing Conflict
Social Science Scholars Award for HRDAG Book
In Syria, Uncovering the Truth Behind a Number
Limitations of mitigating judicial bias with machine learning
Kristian Lum (2017). Limitations of mitigating judicial bias with machine learning. Nature. 26 June 2017. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Human Behavior. DOI 10.1038/s41562-017-0141.
Media Contact
How Data Analysis Reconsiders Deaths During Arrest
Donate with Cryptocurrency
Rise of the racist robots – how AI is learning all our worst impulses
“If you’re not careful, you risk automating the exact same biases these programs are supposed to eliminate,” says Kristian Lum, the lead statistician at the San Francisco-based, non-profit Human Rights Data Analysis Group (HRDAG). Last year, Lum and a co-author showed that PredPol, a program for police departments that predicts hotspots where future crime might occur, could potentially get stuck in a feedback loop of over-policing majority black and brown neighbourhoods. The program was “learning” from previous crime reports. For Samuel Sinyangwe, a justice activist and policy researcher, this kind of approach is “especially nefarious” because police can say: “We’re not being biased, we’re just doing what the math tells us.” And the public perception might be that the algorithms are impartial.
Ouster of Guatemala’s Attorney General
Using Data and Statistics to Bring Down Dictators
In this story, Guerrini discusses the impact of HRDAG’s work in Guatemala, especially the trials of General José Efraín Ríos Montt and Colonel Héctor Bol de la Cruz, as well as work in El Salvador, Syria, Kosovo, and Timor-Leste. Multiple systems estimation and the perils of using raw data to draw conclusions are also addressed.
Megan Price and Patrick Ball are quoted, especially in regard to how to use raw data.
“From our perspective,” Price says, “the solution to that is both to stay very close to the data, to be very conservative in your interpretation of it and to be very clear about where the data came from, how it was collected, what its limitations might be, and to a certain extent to be skeptical about it, to ask yourself questions like, ‘What is missing from this data?’ and ‘How might that missing information change these conclusions that I’m trying to draw?’”
New Report Raises Questions Over CPD’s Approach to Missing Persons Cases
In this video, Trina Reynolds-Tyler of Invisible Institute talks about her work with HRDAG on the missing persons project in Chicago and Beneath the Surface.
Data-driven development needs both social and computer scientists
Excerpt:
Data scientists are programmers who ignore probability but like pretty graphs, said Patrick Ball, a statistician and human rights advocate who cofounded the Human Rights Data Analysis Group.
“Data is broken,” Ball said. “Anyone who thinks they’re going to use big data to solve a problem is already on the path to fantasy land.”
One Better
The University of Michigan College of Literature, Science and the Arts profiled Patrick Ball in its fall 2016 issue of the alumni magazine. Here’s an excerpt:
Ball believes doing this laborious, difficult work makes the world a more just place because it leads to accountability.
“My part is a specific, narrow piece, which just happens to fit with the skills I have,” he says. “I don’t think that what we do is in any way the best or most important part of human rights activism. Sometimes, we are just a footnote—but we are a really good footnote.”
Direct procès Habré: le taux de mortalité dans les centres de détention, au menu des débats
Statisticien, Patrick Ball est à la barre ce vendredi matin. L’expert est entendu sur le taux de mortalité dans les centres de détention au Tchad sous Habré. Désigné par la chambre d’accusation, il dira avoir axé ses travaux sur des témoignages, des données venant des victimes et des documents de la DDS (Direction de la Documentation et de la Sécurité).
Counting Civilian Casualties: An Introduction to Recording and Estimating Nonmilitary Deaths in Conflict
ed. by Taylor B. Seybolt, Jay D. Aronson, and Baruch Fischhoff. Oxford University Press. © 2013 Oxford University Press. All rights reserved.
The following four chapters are included:
— Todd Landman and Anita Gohdes (2013). “A Matter of Convenience: Challenges of Non-Random Data in Analyzing Human Rights Violations in Peru and Sierra Leone.”
— Jeff Klingner and Romesh Silva (2013). “Combining Found Data and Surveys to Measure Conflict Mortality.”
— Daniel Manrique-Vallier, Megan E. Price, and Anita Gohdes (2013). “Multiple-Systems Estimation Techniques for Estimating Casualties in Armed Conflict.”
— Jule Krüger, Patrick Ball, Megan Price, and Amelia Hoover Green (2013). “It Doesn’t Add Up: Methodological and Policy Implications of Conflicting Casualty Data.”
