694 results for search: %E3%80%8C%ED%95%AB%EB%AC%B4%EB%B9%84%E3%80%8D%20WWW%CD%BAHOTMOVIE%CD%BAPW%20%20%EC%B2%AD%EC%96%91%EB%8C%81%EC%9B%80%EC%A7%A4%20%EC%B2%AD%EC%96%91%EB%8C%81%EC%9B%90%EB%82%98%EC%9E%87%E2%97%8E%EC%B2%AD%EC%96%91%EB%8C%81%EC%9B%90%EB%B3%B8%C3%B2%EC%B2%AD%EC%96%91%EB%8C%81%EC%9C%A0%EC%B6%9C%E3%8A%AF%E3%82%85%E5%B5%BFslapping/feed/content/india/copyright
Big Data, Selection Bias, and the Statistical Patterns of Mortality in Conflict
Megan Price and Patrick Ball (2014). SAIS Review of International Affairs © 2014 The Johns Hopkins University Press. This article first appeared in SAIS Review, Volume 34, Issue 1, Winter-Spring 2014, pages 9-20. All rights reserved.
Ten Years and Counting in Guatemala
Matching the Libro Amarillo to Historical Human Rights Datasets in El Salvador
Patrick Ball (2014). A memo accompanying the release of The Yellow Book. August 20, 2014. © 2014 HRDAG. Creative Commons BY-NC-SA.[pdf español]
Selection Bias and the Statistical Patterns of Mortality in Conflict.
Megan Price and Patrick Ball. 2015. Statistical Journal of the IAOS 31: 263–272. doi: 10.3233/SJI-150899. © IOS Press and the authors. All rights reserved. Creative Commons BY-NC-SA.
How We Choose Projects
Technical Memo for Amnesty International Report on Deaths in Detention
Megan Price, Anita Gohdes and Patrick Ball (2016). Human Rights Data Analysis Group, commissioned by Amnesty International. August 17, 2016. © 2016 HRDAG. Creative Commons BY-NC-SA.
Statistics and Slobodan
Patrick Ball and Jana Asher (2002). “Statistics and Slobodan: Using Data Analysis and Statistics in the War Crimes Trial of Former President Milosevic.” Chance, vol. 15, No. 4, 2002. Reprinted with permission ofChance. © 2002 American Statistical Association. All rights reserved.
Uncertainty in COVID Fatality Rates
In Solidarity
Palantir Has Secretly Been Using New Orleans to Test Its Predictive Policing Technology
One of the researchers, a Michigan State PhD candidate named William Isaac, had not previously heard of New Orleans’ partnership with Palantir, but he recognized the data-mapping model at the heart of the program. “I think the data they’re using, there are serious questions about its predictive power. We’ve seen very little about its ability to forecast violent crime,” Isaac said.
Reflections: Some Stories Shape You
Data Mining for Good: CJA Drink + Think
Learning the Hard Way at the ICTY: Statistical Evidence of Human Rights Violations in an Adversarial Information Environment.
Amelia Hoover Green. In Collective Violence and International Criminal Justice: An Interdisciplinary Approach, ed. Alette Smeulers, Antwerp, Belgium. © 2010 Intersentia. All rights reserved. [Link coming soon]
The True Dangers of AI are Closer Than We Think
William Isaac is quoted.
Quantifying Injustice
“In 2016, two researchers, the statistician Kristian Lum and the political scientist William Isaac, set out to measure the bias in predictive policing algorithms. They chose as their example a program called PredPol. … Lum and Isaac faced a conundrum: if official data on crimes is biased, how can you test a crime prediction model? To solve this technique, they turned to a technique used in statistics and machine learning called the synthetic population.”
Estimating the Number of SARS-CoV-2 Infections and the Impact of Mitigation Policies
Theoretical limits of microclustering for record linkage
John E Johndrow, Kristian Lum and D B Dunson (2018). Theoretical limits of microclustering for record linkage. Biometrika. 19 March 2018. © 2018 Oxford University Press. DOI 10.1093/biomet/asy003.
Using Statistics to Assess Lethal Violence in Civil and Inter-State War
Patrick Ball and Megan Price (2019). Using Statistics to Assess Lethal Violence in Civil and Inter-State War. Annual Review of Statistics and Its Application. 7 March 2019. © 2019 Annual Reviews. All rights reserved. https://doi.org/10.1146/annurev-statistics-030718-105222.
Low-risk population size estimates in the presence of capture heterogeneity
James Johndrow, Kristian Lum and Daniel Manrique-Vallier (2019). Low-risk population size estimates in the presence of capture heterogeneity. Biometrika, asy065, 22 January 2019. © 2019 Biometrika Trust. https://doi.org/10.1093/biomet/asy065