592 results for search: %EC%9D%B8%ED%84%B0%EB%84%B7%ED%99%8D%EB%B3%B4%E2%96%B2%E0%B4%A0%E2%9D%B6%E0%B4%A0%2B%E2%9D%BD%E2%9D%BD%E2%9D%BC%E2%9D%BB%2B%E2%9D%BD%E2%9D%BC%E2%9D%BC%E2%9D%BD%E2%96%B2%EC%83%81%ED%95%98%EB%8F%99%EC%95%88%EB%A7%88%E3%81%AB%EC%9D%B8%ED%84%B0%EB%84%B7%E2%94%9A%ED%99%8D%EB%B3%B4%E2%86%92%EC%83%81%ED%95%98%EB%8F%99%E5%AA%99%EC%95%88%EB%A7%88%E4%A2%8Ddesklight/feed/rss2/copyright
Using Math and Science to Count Killings in Syria
Liberian Truth and Reconciliation Commission Data
HRDAG Drops Dropbox
Applications of Multiple Systems Estimation in Human Rights Research
Lum, Kristian, Megan Emily Price, and David Banks. 2013. The American Statistician 67, no. 4: 191-200. doi: 10.1080/00031305.2013.821093. © 2013 The American Statistician. All rights reserved. [free eprint may be available].
HRDAG Adds Three New Board Members
Scanning Documents to Uncover Police Violence
The Limits of Observation for Understanding Mass Violence.
Sierra Leone TRC Data and Statistical Appendix
Liberia 2009 – Coding Testimony to Determine Accountability for War Crimes
Amstat People News for November 2021
“The 36th Rafto Prize was awarded to the Human Rights Data Analysis Group (HRDAG) for their work on uncovering large-scale human rights violations. By using statistics and data science, HRDAG documents human rights violations that might otherwise go undetected. Their approach has enabled courts to bring perpetrators to justice and given closure to affected victims and their families.”
Uncovering Police Violence in Chicago: A collaboration between HRDAG and Invisible Institute
PRIO Director Henrik Urdal’s 2022 Nobel Peace Prize Shortlist
Henrik Urdal has released his final Nobel Shortlist for 2022, and HRDAG is included on it, alongside Sviatlana Tsikhanouskaya and Alexei Navalny, and others. The list highlights pro-democracy efforts, multilateral cooperation, combating religious extremism and intolerance, and the value that research and knowledge can have for promoting peace.
A Data Double Take: Police Shootings
“In a recent article, social scientist Patrick Ball revisited his and Kristian Lum’s 2015 study, which made a compelling argument for the underreporting of lethal police shootings by the Bureau of Justice Statistics (BJS). Lum and Ball’s study may be old, but it bears revisiting amid debates over the American police system — debates that have featured plenty of data on the excessive use of police force. It is a useful reminder that many of the facts and figures we rely on require further verification.”
Ciencia de datos para trazar un mapa de la crueldad a la mexicana
From the article: Esta entidad, que existe desde 1991, es liderada por su fundador, Patrick Ball, un científico que acumula una experiencia de más de 25 años realizando análisis cuantitativos en los lugares y en las situaciones más convulsos del planeta. Sobre su colaboración con el proyecto del predictor de fosas clandestinas en México, único en el mundo, Ball afirmó en entrevista:
“Cuando hablamos de crímenes de lesa humanidad estamos hablando de instituciones, de organizaciones grandes, cometiendo miles o centenares de miles de violaciones a víctimas distribuidas sobre una geografía enorme. Para entender los patrones en esas violaciones, la estadística puede brindar una mirada sobre quiénes son los responsables materiales e intelectuales, quiénes son las víctimas y dónde o cuándo pasaron esas violaciones. Pero la estadística no es contabilidad, pues no estamos hablando solamente de las violaciones que podemos ver, sino que también debemos calcular las violaciones no observadas, las escondidas, invisibles, para incluir en nuestro análisis la totalidad de las violaciones”.
Quantifying Injustice
“In 2016, two researchers, the statistician Kristian Lum and the political scientist William Isaac, set out to measure the bias in predictive policing algorithms. They chose as their example a program called PredPol. … Lum and Isaac faced a conundrum: if official data on crimes is biased, how can you test a crime prediction model? To solve this technique, they turned to a technique used in statistics and machine learning called the synthetic population.”