708 results for search: %E3%80%8C%EC%97%94%EC%A1%B0%EC%9D%B4%ED%8F%B0%ED%8C%85%E3%80%8D%20WWW_BEX_PW%20%20%EC%82%BC%EC%84%B1%EC%A4%91%EC%95%99%EC%97%AD%EB%9E%9C%EC%B1%97%20%EC%82%BC%EC%84%B1%EC%A4%91%EC%95%99%EC%97%AD%EB%A6%AC%EC%96%BC%ED%8F%B0%ED%8C%85%E2%86%92%EC%82%BC%EC%84%B1%EC%A4%91%EC%95%99%EC%97%AD%EB%A7%8C%EB%82%A8%E2%9C%81%EC%82%BC%EC%84%B1%EC%A4%91%EC%95%99%EC%97%AD%EB%A7%8C%EB%82%A8%EA%B5%AC%ED%95%A8%E3%8A%8C%E3%81%86%E8%B9%9Eimparkation/feed/content/colombia/Co-union-violence-paper-response.pdf
Where Stats and Rights Thrive Together
War and Illness Could Kill 85,000 Gazans in 6 Months
HRDAG director of research Patrick Ball is quoted in this New York Times article about a paper that models death tolls in Gaza.
Big Data Predictive Analytics Comes to Academic and Nonprofit Institutions to Fuel Innovation
Celebrating Women in Statistics
In her work on statistical issues in criminal justice, Lum has studied uses of predictive policing—machine learning models to predict who will commit future crime or where it will occur. In her work, she has demonstrated that if the training data encodes historical patterns of racially disparate enforcement, predictions from software trained with this data will reinforce and—in some cases—amplify this bias. She also currently works on statistical issues related to criminal “risk assessment” models used to inform judicial decision-making. As part of this thread, she has developed statistical methods for removing sensitive information from training data, guaranteeing “fair” predictions with respect to sensitive variables such as race and gender. Lum is active in the fairness, accountability, and transparency (FAT) community and serves on the steering committee of FAT, a conference that brings together researchers and practitioners interested in fairness, accountability, and transparency in socio-technical systems.
Palantir Has Secretly Been Using New Orleans to Test Its Predictive Policing Technology
One of the researchers, a Michigan State PhD candidate named William Isaac, had not previously heard of New Orleans’ partnership with Palantir, but he recognized the data-mapping model at the heart of the program. “I think the data they’re using, there are serious questions about its predictive power. We’ve seen very little about its ability to forecast violent crime,” Isaac said.
Middle East
Mexico
HRDAG Names New Board Member Margot Gerritsen
Nonprofits Are Taking a Wide-Eyed Look at What Data Could Do
Stay informed about our work
Lies, Damned Lies and Official Statistics
Media Contact
Rise of the racist robots – how AI is learning all our worst impulses
“If you’re not careful, you risk automating the exact same biases these programs are supposed to eliminate,” says Kristian Lum, the lead statistician at the San Francisco-based, non-profit Human Rights Data Analysis Group (HRDAG). Last year, Lum and a co-author showed that PredPol, a program for police departments that predicts hotspots where future crime might occur, could potentially get stuck in a feedback loop of over-policing majority black and brown neighbourhoods. The program was “learning” from previous crime reports. For Samuel Sinyangwe, a justice activist and policy researcher, this kind of approach is “especially nefarious” because police can say: “We’re not being biased, we’re just doing what the math tells us.” And the public perception might be that the algorithms are impartial.
“El reto de la estadística es encontrar lo escondido”: experto en manejo de datos sobre el conflicto
In this interview with Colombian newspaper El Espectador, Patrick Ball is quoted as saying “la gente que no conoce de álgebra nunca debería hacer estadísticas” (people who don’t know algebra should never do statistics).
Hunting for Mexico’s mass graves with machine learning
“The model uses obvious predictor variables, Ball says, such as whether or not a drug lab has been busted in that county, or if the county borders the United States, or the ocean, but also includes less-obvious predictor variables such as the percentage of the county that is mountainous, the presence of highways, and the academic results of primary and secondary school students in the county.”
Evaluating gunshot detection technology
Weighting for the Guatemalan National Police Archive Sample: Unusual Challenges and Problems.”
Gary M. Shapiro, Daniel R. Guzmán, Paul Zador, Tamy Guberek, Megan E. Price, Kristian Lum (2009).“Weighting for the Guatemalan National Police Archive Sample: Unusual Challenges and Problems.”In JSM Proceedings, Survey Research Methods Section. Alexandria, VA: American Statistical Association.