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Abstract
This paper describes the weighting procedures used for the sample of records from the Guatemalan
National Police Archive. The decisions made about sampling procedures to address the structure
of the Archive resulted in a number of special problems when calculating the weights. First and
foremost, the universe from which samples were selected is highly unusual and fluid, with sparse
knowledge of measures of size. At more than one stage of selection, probabilities of selection were
not known, requiring weights to be based on estimates of the probabilities of selection. There were
difficulties stemming from operational issues, such as the movement of documents while the survey
was conducted and empty space within containers.
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1. Background and Introduction

This paper, the second in a series of three papers, describes the weighting for the sample of
documents in the first nine waves of sampling at the Guatemalan National Police Archive
(GNPA). The documents were haphazardly stored in warehouses, presenting challenges in
both selecting the sample and in subsequent weight calculations to appropriately account
for sample design decisions. As described in the first paper [1], the documents are poten-
tially useful to learn about the National Police’s role in the violence during the internal
armed conflict in Guatemala from 1960-1996.

The following section of this paper will present the weight calculations for each of the
four stages of sampling described in Guzmán et al [1]: environment, container, last unit of
aggregation (LUA), and information unit (IU). Analyses presented in the following paper
in this series [2] are conducted at the document level (IUs may contain multiple docu-
ments). However, since documents were selected with certainty once an IU was selected,

∗Gary Shapiro, recently retired, was a Senior Statistician at Westat during the majority of his con-
tribution to this study. Paul Zador, PhD., is a Senior Statistician at Westat. Both Shapiro and Zador
are members of the Volunteerism Special Interest Group of the American Statistical Association. Daniel
Guzmán and Tamy Guberek are consultants for the Human Rights Data Analysis Group at The Benetech
Initiative. Megan Price, PhD., is a statistician for HRDAG. Kristian Lum is a PhD. candidate in the Duke
Department of Statistical Science. www.hrdag.org,www.benetech.org.

1

www.hrdag.org
www.benetech.org


IUs are the last stage at which weights are calculated. Section 2 discusses special problems
in determining environment weights in waves 1 and 2, and the LUA and IU base weights.
Section 3 discusses the additional special problem created by movement of documents dur-
ing the sampling process. Section 4 discusses an additional weighting step that could be
implemented in the future. Section 5 discusses data quality and imputation. Finally, in
Section 6, we briefly summarize what has happened since the end of wave 9. This paper
particularly focuses on the special weighting problems as discussed in Sections 2 and 3.

A traditional Horvitz-Thompson weighting approach was used for the survey, with base
weights equal to the inverse of the probability of selection or, in some cases, to estimates
of the probability of selection. The measure of size is height, in linear meters, for all stages
of selection except the third stage (LUA) where volume was used.

There were an initial nine waves of sample selection. For simplification, we will discuss
the weighting for a single wave, with comments about combining across waves in Section 2.5

2. Basic Weights

The weighting approach for the survey is the traditional approach (described in all survey
sampling textbooks), with base weights being equal to the inverse of the probability of
selection, and appropriate post-stratification adjustments applied to the base weights. As
described by Guzman et al. [1], the measure of size for the first 2 stages was height, the
measure of size for the third stage of selection was volume and the measure of size for the
last stage of selection was height.

2.1 Environment Weights

For waves 3-9, the weighting was straightforward. Using 33 random numbers (as explained
in [1]) we selected either 22 or 23 environments per wave, with probability proportional to
the linear meters of paper within the environment, with replacement. Since the probability
of not selecting Ei, the ith environment was (1−pi), this resulted in the following probability
of selection for Ei:

Pr(Ei) = 1 − (1 − pi)33 (1)

where:

Ei is the environment i, and pi = Linear meters Ei∑
Linear meters Ei

.
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Linear meters Ei is the measure of size for Ei. Therefore, the environment base weight
for Ei is W (Ei) = 1/Pr(Ei).

For waves 1 and 2, we also sampled with replacement, but the number of unique envi-
ronments in sample was fixed rather than the number of random numbers used to select
the sampled environments. For wave 1, we used 25 random numbers to obtain 20 unique
selected environments. For wave 2, we set the number of unique environments at 23, but
had to select a sample of 58 random numbers to obtain the 23 unique environments. This
sampling methodology made it difficult to calculate weights directly. A Monte Carlo sim-
ulation was used, repeating sample selection 10,000 times. Based on how many times the
environments in our samples were in the simulated samples, we computed the estimated
environment selection probabilities. The environment base weight for these waves is also
the inverse of the probability of selection.

2.2 Container Weights

A container may consist of a bookshelf, filing cabinet, tabletop, sack, wooden platform,
floor space, or other object located in an environment. For a given environment in a given
wave, a fixed number of points were sampled as explained in Guzmán et al., [1]. Each
point represents one container to be selected, and the same container can be selected more
than once. The number of containers selected per environment was determined according
to the size of the environment. The optimal sample design would have been equal sample
sizes for each selected environment rather than sample size proportional to the measure
of size of the environment. That is, we would have obtained less variable weights if there
had been the same number of sampled containers for each sampled environment. Using
PPS to select environments should have solved the problem of drastically different sizes of
containers, however, in the early stages of sampling we remained concerned that PPS at
the first stage was not adequately accounting for the differences in sizes of containers and
therefore also selected containers according to PPS.

To calculate the conditional probability of selecting container j in environment i, we
used:

Pr(Cij) = Pointsi
Linear meters Cij∑
j Linear meters Cij

(2)

where:

Cij = Container j in Environment i,
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Pointsi = Number of selected points in Environment i, and

Linear mts Cij is the number of linear meters in container Cij .

The conditional container weight is then W (Cij) = 1
Pr(Cij)

.

2.3 Last Unit of Aggregation (LUA) Weights

There were special problems in determining weights for the Last Unit of Aggregation
(LUA), due to our inability to know or reliably estimate the probability of selection. A
LUA is a group of documents that have been stored together in the archive. Examples of
LUAs are folders, drawers, bundles of documents tied together, boxes of documents filed
together, plus many others. A single LUA was drawn per selected container. However,
since containers were selected with replacement in the previous step, it is possible for mul-
tiple LUAs to be drawn independently from the same container.

Sampling of LUAs was done based on random coordinates in three-dimensional space
inside containers, as defined in Guzmán et al [1]. Thus, this sampling was based on volume,
unlike the sampling for the first two stages, which were based on linear meters. As men-
tioned in Guzmán et al, these random coordinates could correspond to a hit in occupied
or empty space inside the container. Thus, for a container that was selected once, a LUA
may be selected after one or many hits (if the first few hits were in empty space). The true
conditional probability of selection of a LUA within a container is a direct function of the
proportion of space that it occupies. However, we were not able to directly estimate this
proportion. The number of hits required to select occupied space provides an estimate of
this proportion, but when there is only a single or small number of LUAs to be sampled,
the estimate is quite poor.

To overcome this lack of information about the proportion of occupied space in each
container, we used a Bayesian hierarchical model to borrow information across the con-
tainers. We assume that the number of empty hits for the ith container, emptyi, comes
from a Negative Binomial distribution, NB(emptyi; requiredi, pi), where requiredi is the
number of LUAs required from the ith container before we can stop drawing, and pi is
the unknown probability of selecting a LUA from container i. We also assume that all
of the pi come from a common Beta distribution, with parameters α and β. Conditional
on α, and β, each of the pi is distributed Beta(α + requiredi, β + emptyi) with mean

requiredi+α
requiredi+α+emptyi+β

. Notice that the mean of each of the pis contains common parameters
α, and β, thus sharing information across containers. To finish the model specification, we
place vague Gamma priors on α, and β and run a simple Gibbs Sampler to sample from
the distribution of the pi, α, and β. We use the posterior mean of each pi as the probability
of drawing a LUA from the ith container, from which we can easily calculate the expected
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number of empty hits that will occur before we draw the required number of LUAs.

The procedure results in weights that are only indirectly related to the actual proba-
bility of selection of a LUA.

The conditional probability of selection for a LUA is:

Pr(Lijk) =
VijkHij

VijSij
(3)

where:

Vij = Volume of container Cij , including empty space,

Vijk = Volume of LUA k in container Cij ,

Sij = Empirical Bayes estimate of the proportion of occupied space for container Cij ,
and

Hij = number of times Cij is selected in the second sample stage.

The conditional LUA weight is then W (Pijk) = 1
Pr(Lijk) .

Unfortunately, examination of initial final weights revealed that this procedure still
inadequately estimated the probability of selecting a LUA. This was determined by com-
paring the estimated total linear meters of paper to the known total linear meters of paper
in the entire Archive, based on the initial inventory. The estimated linear meters for the
entire Archive was calculated from cumulative linear meters based on LUA weights. This
comparison showed that we were consistently overestimating linear meters, which implied
that we had not yet adequately accounted for and excluded empty space. Additional weight
adjustments based on these findings will be discussed in Section 2.6.

Note that since the weights for LUAs are in terms of volume whereas the weights for
environments and containers are in terms of linear meters, the desired cancellation of terms
when conditional weights are multiplied together does not happen. There is more variation
in weights when the cancellation does not occur.

There are special cases where LUA weights were calculated more directly. Given the
necessity of the GNPA project to clean and organize the documents, a subset of the Archive
has been gradually moved to equally-sized archival boxes. If a selected container only
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contained these boxes, the probability of selecting a LUA (in this case a box) was calculated
as one over the total number of LUAs (boxes) in that container.

2.4 Information Unit (IU) Weights

Determining the probability of selection for Information Units (IUs) was also difficult. An
IU is a set of documents which have been filed together by the owners of the original filing
system and relate to a common theme, case or phenomenon. An IU may be a single docu-
ment or a set of documents making up a case file. Sampling was done based on the height
of a sampled LUA. A random point in this single dimension was identified by multiplying
a random number by the height (in linear millimeters) of the LUA. The IU located at that
point was sampled. The next 2 consecutive IUs were then also included in the sample.
Although the probability of selection of the specific group of 3 IUs is clear, the probability
of selection of the individual IUs is more challenging to determine.

Consider the following sorting of IUs in a LUA: Y, Z, A, B, and C, where A is the
initially selected IU in the particular sample, and thus A, B, and C are brought into the
sample. Y and Z are the IUs preceding A in the LUA.

Pr (C in sample) = Pr (A selected) + Pr (B selected) + Pr (C selected), where Pr(A
selected) is the probability of an initial selection of IU A, Pr(B selected) is the probability
of an initial selection of IU B, and Pr(C selected) is the probability of an initial selection
of IU C. This is easily calculated, since we know the heights of A, B, and C.

However, the probability of selection for that first IU is a function of not only its height
but also the height of the preceding 2 IUs, since they could have also brought A into the
sample.

Pr(A in sample) = Pr(Y selected) + Pr(Z selected) + Pr(A selected)

Pr(B in sample) = Pr(Z selected) + Pr(A selected) + Pr (B selected)

Although the probability of selecting A, B and C is clear, there was unfortunately no
information obtained on the height of the preceding Y and Z. We estimated the height of
Y and Z as the average height of the 3 IUs (A, B, and C) that were in the sample. The
probability of selection of Y and Z can then be easily calculated, so that the probabilities
of being in the sample for A, B and C can be calculated (as above).

To justify this substitution, the average number of pages was calculated for each IU
selected first, second and third across the sample. Since an analysis of variance concluded
that these three means were not statistically significantly different from each other, we felt
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comfortable substituting the average height of the selected IUs for the unknown heights of
Y and Z.

The conditional probabilities for IUijkr were calculated as:

Pr(IUijk1) =
# pages(IUijk1)

# p̂ages(LUAijk)
+ 2

∑3
r=1 # pages(IUijkr)/3
# p̂ages(LUAijk)

(4)

Pr(IUijk2) =
# pages(IUijk1)

# p̂ages(LUAijk)
+

# pages(IUijk2)
# p̂ages(LUAijk)

+
∑3

r=1 # pages(IUijkr)/3
# p̂ages(LUAijk)

(5)

Pr(IUijk3) =
# pages(IUijk1)

# p̂ages(LUAijk)
+

# pages(IUijk2)
# p̂ages(LUAijk)

+
# pages(IUijk3)

# p̂ages(LUAijk)
(6)

Where i indexes environments, j indexes containers, k indexes LUAs and r indexes IUs.

The expected number of pages per LUA, # p̂ages(LUAijk) = 11.17 × Height(LUAijk)
was based on archivist knowledge and empirical data from our sample. Height was mea-
sured in millimeters.

The conditional IU weight is then W (IUijkr) = 1
Pr(IUijkr) .

2.5 Combining Weights Across Waves and the Final Weight

The final weight, except for trimming and post-stratification adjustment, for a single wave
is the product of each of the weights in the preceding sections divided by the number of
waves:

Wijkr =
W (Ei) ×W (Cij) ×W (LUAijk) ×W (IUijkr)

9
(7)

Since each wave was designed to represent the entire population of the Archive, com-
bining weights across waves required division by nine.

2.6 Post-Stratification

As mentioned in Section 2.3, additional weight adjustment was considered necessary. To
determine this adjustment, we used known population values to compare with the esti-
mated values. The most reliable known population value was the total linear meters of
paper in the Archive per wave. We applied a one-cell post-stratification adjustment using
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the ratio of the estimated linear meters (as described in Section 2.3) to the known linear me-
ters across all environments as the adjustment factor. This is a somewhat unconventional
adjustment factor - traditional post-stratification adjustment involves sampled elements
themselves (e.g., number of LUAs) rather than attributes of sampled elements (e.g., linear
meters of paper). However, in the absence of population-level information on the number of
LUAs, linear meters were considered a reasonable proxy. This adjustment was carried out
for weights at the LUA level (3rd stage) because we did not measure IUs or documents in
terms of linear meters and therefore could not make this weight adjustment at a later stage.

Table 1 shows an example of how the adjustment was done. The first column in the table
is a unique id for each LUA. The linear meters of a LUA are equivalent to the height of the
LUA, as presented in the second column of the table (LM). The third column has the basic
weight (Wt) for each LUA. The fourth column (LM*Wt) shows the weighted linear meters
for each LUA. Therefore, the sum of this column would be the estimate of the total linear
meters of paper in the Archive (if there were only ten LUAs in the entire archive). Then,
we take the known population value of the total linear meters in the Archive (Pop LM),
which is 1100 linear meters in this example. With this known value we created a factor to
correct the weights as noted in the fifth column (Pop LM/Estimated Total Linear Meters).
This value represents the adjusted weights (basic weight * the factor). Finally, in the last
column, we calculate the weighted linear meters by LUA using the adjusted weights. The
sum of the last column is the estimate of the total linear meters using the adjusted weights.
This estimate should equal the known total linear meters of paper in the Archive.

Table 1: Post-Stratification Adjustment

LUA Linear Meters (LM) Weight (Wt) Weighted LM Adjusted Wt Adjusted LM Estimates
(LM*Wt) (Wt* Pop LM

Est. LM) (Adjusted Wt*LM)

1 0.52 423 219.96 266.80 138.74
2 0.30 500 150.0 315.36 94.61
3 0.40 315 126.0 198.67 79.47
4 0.10 817 81.7 515.29 51.53
5 0.32 511 163.5 322.29 103.13
6 0.48 482 231.4 304.00 145.92
7 0.79 230 181.7 145.06 114.60
8 0.61 270 164.7 170.29 103.88
9 0.50 352 176.0 222.01 111.01

10 0.57 437 249.1 275.62 157.10
Estimated Total LM 1744.06
Total Adjusted LM 1100
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2.7 Trimming of Large Weights

It is known that in complex surveys unplanned large weights may occur. Given our sam-
pling design we expected some unequal sampling weights. Nevertheless large variation in
sampling weights can point to other problems, such as errors in the sample frame or coding
process, or from adjustment procedures. As Potter warns, “[t]his unplanned or extreme
variation in sampling weights can result in inflated sampling variances and a few extreme
weights can offset the precision gains from an otherwise well- designed and executed survey
design.”[3]

Unfortunately, our initial weight calculations revealed extreme variation - the maxi-
mum estimated weight was more than 460 times larger than the median weight. We are
continuing to review the weighting output to understand why there was so much variation.
The weight calculations depended on several measurements that the field team had to take
at stage three, during their work on the ground. Taking these measurements was often
difficult, given the physical conditions of the Archive. The fourth stage also had large vari-
ation but less than the third. We tried to correct for bad measurements using knowledge
from the field team. One option would have been to trim large weights at each stage, but
in theory large weights at one stage could have been compensated by very small weights
in the next stage. We decided to use visual exploration to choose the cut point for large
cumulative weights, taking into account the trade off between bias and variance reduction
(see Figure 1). A cut point was chosen (according to the method described below) that
resulted in 56 records (0.7%) being trimmed. Post-trimming, the ratio of the maximum es-
timated weight to median weight was 115. The estimate of the total number of documents
remained constant pre- and post-trimming.
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Figure 1: Visual Exploration of Weights to Determine Cut Point for Trimming
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We began exploring the appropriate cut point by directly plotting bias against standard
error reduction, as shown in the plot in the upper right of Figure 1 (each point represents
one potential cut point value). While we can see the behavior of bias against standard
error reduction, it is hard to know the value of the cut point from the graph. So next, we
used two methods to take into account the trade off between bias and the standard error
reduction for specific cut points. We plotted the values of equations 8 and 9 below for cut
points, as seen in the two plots on the left side of Figure 1. For both equations, the best
cut point is determined at the minimum value (i.e., the trough in each of the plots above).
Combining information from the three plots we chose the best cut point for the trimming
process.

Method 1 = bias(L̂Mc)2 − SE(L̂Mo)2 + 2 ∗ SE(L̂Mc)2 (8)

Method 2 =
bias(L̂Mc)2

L̂Mo

− (SE(L̂Mo) − SE(L̂Mc))2

SE(L̂Mo)
(9)

where:

L̂Mo = the estimate of total linear meters using weights before trimming, and

L̂Mc = the estimate of total linear meters using trimmed weights at cut point c.

3. Additional Special Problem

Sections 2.1, 2.3 and 2.4 discussed problems resulting from our inability to accurately esti-
mate the probability of selection for Environments in waves one and two, and LUAs and IUs
in all waves. One additional problem in the weighting was due to the continuous movement
of contents of containers around the warehouses. Thus, the makeup of an environment may
have changed from the time of initial measures of size and the selection of containers, so
that the contents of a sampled container were no longer in the same location. As Figure 2
shows, there were three main possibilities for the movement: One container was split into
many containers; several containers were merged into one container; or all the documents
were moved from a sampled container into another new container. A rare fourth possi-
bility is not depicted in Figure 2. This possibility is referred to as movement from many
containers to many other containers (see Table 2), and occurs when the contents of several
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sampled containers are combined into several new containers.

Figure 2: Possible Container Movement

However, as Table 2 shows, the majority of the containers (65%) did not experience
any movement. The second row of the table shows those situations where a container was
moved from one location to another, and where we can assume there were no documents
removed from the container nor documents added to the container from elsewhere, as is
the case for 16% of the sampled containers. For 9% of the sampled containers, documents
from many sampled containers were collapsed into one single container that was selected
(but not originally sampled). Five percent of the containers were split from one container
to many and one percent were moved from many containers to many containers. Lastly,
we do not have information regarding movement for four percent of containers.

Table 2: Container movement table

From To Freq Pct
No movement 772 65
1 1 189 16
Many 1 102 9
1 Many 61 5
Many Many 9 1

Unknown 48 4
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Weights can only be calculated in the usual manner for cases in which old and new
containers were correctly matched, the new, receiving container(s) was (were) found, and
there are estimates of the linear meters for all merged containers. If a sampled container is
merged with another unsampled container and this is unknown, the weight will be based
on a probability of selection that is lower than the true probability of selection, i.e., the
weight ignores the fact that there was a second container that could have brought us to the
same sampled container. In most cases, however, correct tracing of containers was possible.
Therefore we do not believe that the movement seriously impacted the weights (see Table 2
above), with only the 48 containers in the last row of table 2 likely to have incorrect weights.

4. Future Weighting Step

We are planning to add an additional step in the weighting process. Since we independently
select 33 environments within each wave (for waves 3-9) and make independent selections
across waves, some environments are over-sampled and some are under sampled. We plan
to rake the environment weights W (Ei) to two sets of controls. This raking has not yet
been done, and the estimates presented in the third paper in this session [2] use weights
that do not include this raking adjustment. Note that the linear meters of paper in con-
tainers in an environment can change over time, and thus vary by wave. Thus, one set
of controls for raking are the linear meters of paper in containers in each wave (across all
environments). The second set of controls for raking are the linear meters of containers in
each environment across waves. In doing the raking, we will probably do some combining
of small environments, thus doing the raking by groups of environments rather than indi-
vidual environments. A raking factor Rj will be applied immediately after the environment
base weight.

5. Imputation

As mentioned in Section 2.7, many things can cause large weights. It is important to
investigate these causes as they may be an indication of bad data. During our data clean-
ing step, we found two main sources of bad data in our study - implausible and missing data.

In order to detect implausible data we conducted the following face validity check: in
terms of linear meters, IUijkr < LUAijk < Cij < Ei. We found some measurements for
containers and LUAs that were too large to be plausibly correct (i.e., LUAs that were larger
than the containers from which they were sampled). This occurred in approximately 8%
of containers and 17% of LUAs. Some of these errors occurred during data entry. Others
may have been due to confusion in the unit of measurement, the place of a decimal point
or missing data. These kinds of errors were likely exacerbated by high turnover in the field
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team personnel over the course of the nine waves. Where possible we went back to the
hard-coded forms to recover data that was incorrectly digitalized.

For the remaining erroneous data, we used the standard imputation method k near-
est neighbors in the R software package called “impute.”[4] The imputation was done for
erroneous container and LUA measurements as well as for missing number of pages in an IU.

6. Conclusion

We have described the weighting for the sample of the Guatemalan National Police Archives
and the primary challenges in calculating these weights. Despite the highly non-traditional
nature of the sampling procedure dictated by the structure of the Archive, we are confi-
dent that we have achieved representative measures. Lessons learned from the challenges
presented in this paper are already being implemented in ongoing sampling at the Archive
today. Most importantly, samples as of wave 10 are no longer sensitive to paper movement
inside the Archive. Another approximately 12,000 documents have been sampled in this
wave and we expect the resulting weighting procedure to be simplified and thus less time-
consuming. We will no longer have problems of unknown probabilities of selection, and
expect that the weights will be much less variable. We believe these documents will enrich
our understanding of the National Police’s role in the violence in Guatemala’s internal
armed conflict between 1960 to 1996.
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