592 results for search: %EC%9D%B8%ED%84%B0%EB%84%B7%ED%99%8D%EB%B3%B4%E2%96%B2%E0%B4%A0%E2%9D%B6%E0%B4%A0%2B%E2%9D%BD%E2%9D%BD%E2%9D%BC%E2%9D%BB%2B%E2%9D%BD%E2%9D%BC%E2%9D%BC%E2%9D%BD%E2%96%B2%EC%83%81%ED%95%98%EB%8F%99%EC%95%88%EB%A7%88%E3%81%AB%EC%9D%B8%ED%84%B0%EB%84%B7%E2%94%9A%ED%99%8D%EB%B3%B4%E2%86%92%EC%83%81%ED%95%98%EB%8F%99%E5%AA%99%EC%95%88%EB%A7%88%E4%A2%8Ddesklight/feed/rss2/copyright


Death Numbers


10MM Images from Guatemala’s National Police Go Online: Disappearances, STD Experiments, More


Calculating Body Counts


Humanitarian Statistics


Guatemala: The Secret Files

Guatemala is still plagued by urban crime, but it is peaceful now compared to the decades of bloody civil war that convulsed the small Central American country. As he arrives in the capital, Guatemala City, FRONTLINE/World reporter Clark Boyd recalls, “When the fighting ended in the 1990s, many here wanted to move on, burying the secrets of the war along with hundreds of thousands of the dead and disappeared. But then, in July 2005, the past thundered back.”


Guatemala Struggles to Find War Crimes Justice


What HBR Gets Wrong About Algorithms and Bias

“Kristian Lum… organized a workshop together with Elizabeth Bender, a staff attorney for the NY Legal Aid Society and former public defender, and Terrence Wilkerson, an innocent man who had been arrested and could not afford bail. Together, they shared first hand experience about the obstacles and inefficiencies that occur in the legal system, providing valuable context to the debate around COMPAS.”


The ghost in the machine

“Every kind of classification system – human or machine – has several kinds of errors it might make,” [Patrick Ball] says. “To frame that in a machine learning context, what kind of error do we want the machine to make?” HRDAG’s work on predictive policing shows that “predictive policing” finds patterns in police records, not patterns in occurrence of crime.


Fosas clandestinas en México manifiestan existencia de crímenes de lesa humanidad

Patrick Ball, estadístico norteamericano, colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana en una investigación sobre fosas clandestinas.


Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero

El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.


Mapping Mexico’s hidden graves

When Patrick Ball was introduced to Ibero’s database, the director of research at the Human Rights Data Analysis Group in San Francisco, California, saw an opportunity to turn the data into a predictive model. Ball, who has used similar models to document human rights violations from Syria to Guatemala, soon invited Data Cívica, a Mexico City–based nonprofit that creates tools for analyzing data, to join the project.


Crean sistema para predecir fosas clandestinas en México

Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.


Trump’s “extreme-vetting” software will discriminate against immigrants “Under a veneer of objectivity,” say experts

Kristian Lum, lead statistician at the Human Rights Data Analysis Group (and letter signatory), fears that “in order to flag even a small proportion of future terrorists, this tool will likely flag a huge number of people who would never go on to be terrorists,” and that “these ‘false positives’ will be real people who would never have gone on to commit criminal acts but will suffer the consequences of being flagged just the same.”


Celebrating Women in Statistics

kristian lum headshot 2018In her work on statistical issues in criminal justice, Lum has studied uses of predictive policing—machine learning models to predict who will commit future crime or where it will occur. In her work, she has demonstrated that if the training data encodes historical patterns of racially disparate enforcement, predictions from software trained with this data will reinforce and—in some cases—amplify this bias. She also currently works on statistical issues related to criminal “risk assessment” models used to inform judicial decision-making. As part of this thread, she has developed statistical methods for removing sensitive information from training data, guaranteeing “fair” predictions with respect to sensitive variables such as race and gender. Lum is active in the fairness, accountability, and transparency (FAT) community and serves on the steering committee of FAT, a conference that brings together researchers and practitioners interested in fairness, accountability, and transparency in socio-technical systems.


A better statistical estimation of known Syrian war victims

Researchers from Rice University and Duke University are using the tools of statistics and data science in collaboration with Human Rights Data Analysis Group (HRDAG) to accurately and efficiently estimate the number of identified victims killed in the Syrian civil war.

Using records from four databases of people killed in the Syrian war, Chen, Duke statistician and machine learning expert Rebecca Steorts and Rice computer scientist Anshumali Shrivastava estimated there were 191,874 unique individuals documented from March 2011 to April 2014. That’s very close to the estimate of 191,369 compiled in 2014 by HRDAG, a nonprofit that helps build scientifically defensible, evidence-based arguments of human rights violations.


Megan Price: Life-Long ‘Math Nerd’ Finds Career in Social Justice

“I was always a math nerd. My mother has a polaroid of me in the fourth grade with my science fair project … . It was the history of mathematics. In college, I was a math major for a year and then switched to statistics.

I always wanted to work in social justice. I was raised by hippies, went to protests when I was young. I always felt I had an obligation to make the world a little bit better.”


Cifra de líderes sociales asesinados es más alta: Dejusticia

Contrario a lo que se puede pensar, los datos oficiales sobre líderes sociales asesinados no necesariamente corresponden a la realidad y podría haber mucha mayor victimización en las regiones golpeadas por este flagelo, según el más reciente informe del Centro de Estudios de Justicia, Derecho y Sociedad (Dejusticia) en colaboración con el Human Rights Data Analysis Group.


Data-driven crime prediction fails to erase human bias

Work by HRDAG researchers Kristian Lum and William Isaac is cited in this article about the Policing Project: “While this bias knows no color or socioeconomic class, Lum and her HRDAG colleague William Isaac demonstrate that it can lead to policing that unfairly targets minorities and those living in poorer neighborhoods.”


Situación de líderes sociales “es más grave de lo que se está mostrando”

Video available. La organización Dejusticia, en alianza con una institución estadounidense, asegura que los crímenes van en aumento y existe un subregistro. “Aumentó la violencia letal contra líderes sociales en 2016 y 2017 en al menos 10%”, asegura Valentina Rozo, investigadora de Dejusticia.


Los asesinatos de líderes sociales que quedan fuera de las cuentas

Una investigación de Dejusticia y Human Rights Data Analysis Group concluyó que hay un subconteo en los asesinatos de líderes sociales en Colombia. Es decir, que el aumento de estos crímenes en 2016 y 2017 podría ser incluso mayor al reportado por las organizaciones y por las cifras oficiales.


Our work has been used by truth commissions, international criminal tribunals, and non-governmental human rights organizations. We have worked with partners on projects on five continents.

Donate