653 results for search: %EB%A7%88%EC%BC%80%ED%8C%85%ED%8C%80%E2%99%A0%E0%B4%A0%E2%9D%B6%E0%B4%A0%2B%E2%9D%BD%E2%9D%BD%E2%9D%BC%E2%9D%BB%2B%E2%9D%BD%E2%9D%BC%E2%9D%BC%E2%9D%BD%E2%99%A0%EB%8F%84%EC%95%94%EB%A9%B4%EB%AA%A8%ED%85%94%E3%84%A5%EB%A7%88%EC%BC%80%ED%8C%85%E2%94%8E%ED%8C%80%16%EB%8F%84%EC%95%94%EB%A9%B4%E8%A8%97%EB%AA%A8%ED%85%94%E3%9D%B2conventicle/feed/content/colombia/copyright
Quantifying Injustice
“In 2016, two researchers, the statistician Kristian Lum and the political scientist William Isaac, set out to measure the bias in predictive policing algorithms. They chose as their example a program called PredPol. … Lum and Isaac faced a conundrum: if official data on crimes is biased, how can you test a crime prediction model? To solve this technique, they turned to a technique used in statistics and machine learning called the synthetic population.”
Ciencia de datos para trazar un mapa de la crueldad a la mexicana
From the article: Esta entidad, que existe desde 1991, es liderada por su fundador, Patrick Ball, un científico que acumula una experiencia de más de 25 años realizando análisis cuantitativos en los lugares y en las situaciones más convulsos del planeta. Sobre su colaboración con el proyecto del predictor de fosas clandestinas en México, único en el mundo, Ball afirmó en entrevista:
“Cuando hablamos de crímenes de lesa humanidad estamos hablando de instituciones, de organizaciones grandes, cometiendo miles o centenares de miles de violaciones a víctimas distribuidas sobre una geografía enorme. Para entender los patrones en esas violaciones, la estadística puede brindar una mirada sobre quiénes son los responsables materiales e intelectuales, quiénes son las víctimas y dónde o cuándo pasaron esas violaciones. Pero la estadística no es contabilidad, pues no estamos hablando solamente de las violaciones que podemos ver, sino que también debemos calcular las violaciones no observadas, las escondidas, invisibles, para incluir en nuestro análisis la totalidad de las violaciones”.
The True Dangers of AI are Closer Than We Think
William Isaac is quoted.
Data-driven crime prediction fails to erase human bias
Work by HRDAG researchers Kristian Lum and William Isaac is cited in this article about the Policing Project: “While this bias knows no color or socioeconomic class, Lum and her HRDAG colleague William Isaac demonstrate that it can lead to policing that unfairly targets minorities and those living in poorer neighborhoods.”
Mapping Mexico’s hidden graves
When Patrick Ball was introduced to Ibero’s database, the director of research at the Human Rights Data Analysis Group in San Francisco, California, saw an opportunity to turn the data into a predictive model. Ball, who has used similar models to document human rights violations from Syria to Guatemala, soon invited Data Cívica, a Mexico City–based nonprofit that creates tools for analyzing data, to join the project.
Meet the data analyst putting the perpetrators of genocide in prison
Biotechniques published an interview with Patrick Ball, inspired by his John Maddox Prize award.