643 results for search: %E5%A4%A7%E5%85%AC%E5%8F%B8%E7%9A%84%E4%BC%98%E5%8A%BF%E5%92%8C%E5%8A%A3%E5%8A%BF-%E3%80%90%E2%9C%94%EF%B8%8F%E6%8E%A8%E8%8D%90KK37%C2%B7CC%E2%9C%94%EF%B8%8F%E3%80%91-%E5%90%8C%E6%B2%BB%E6%AF%94%E5%85%89%E7%BB%AA%E5%A4%A7%E5%87%A0%E5%B2%81-%E5%A4%A7%E5%85%AC%E5%8F%B8%E7%9A%84%E4%BC%98%E5%8A%BF%E5%92%8C%E5%8A%A3%E5%8A%BFzo9xn-%E3%80%90%E2%9C%94%EF%B8%8F%E6%8E%A8%E8%8D%90KK37%C2%B7CC%E2%9C%94%EF%B8%8F%E3%80%91-%E5%90%8C%E6%B2%BB%E6%AF%94%E5%85%89%E7%BB%AA%E5%A4%A7%E5%87%A0%E5%B2%81p2dn-%E5%A4%A7%E5%85%AC%E5%8F%B8%E7%9A%84%E4%BC%98%E5%8A%BF%E5%92%8C%E5%8A%A3%E5%8A%BFblgpy-%E5%90%8C%E6%B2%BB%E6%AF%94%E5%85%89%E7%BB%AA%E5%A4%A7%E5%87%A0%E5%B2%81r26q/feed/rss2/copyright


Can ‘predictive policing’ prevent crime before it happens?

100x100-sciencemagHRDAG analyst William Isaac is quoted in this article about so-called crime prediction. “They’re not predicting the future. What they’re actually predicting is where the next recorded police observations are going to occur.”


Weapons of Math Destruction

Weapons of Math Destruction: invisible, ubiquitous algorithms are ruining millions of lives. Excerpt:

As Patrick once explained to me, you can train an algorithm to predict someone’s height from their weight, but if your whole training set comes from a grade three class, and anyone who’s self-conscious about their weight is allowed to skip the exercise, your model will predict that most people are about four feet tall. The problem isn’t the algorithm, it’s the training data and the lack of correction when the model produces erroneous conclusions.


Inside the Difficult, Dangerous Work of Tallying the ISIS Death Toll

HRDAG executive director Megan Price is interviewed by Mother Jones. An excerpt: “Violence can be hidden,” says Price. “ISIS has its own agenda. Sometimes that agenda is served by making public things they’ve done, and I have to assume, sometimes it’s served by hiding things they’ve done.”


5 Questions for Kristian Lum

Kristian Lum discusses the challenges of getting accurate data from conflict zones, as well as her concerns about predictive policing if law enforcement gets it wrong.


Trump’s “extreme-vetting” software will discriminate against immigrants “Under a veneer of objectivity,” say experts

Kristian Lum, lead statistician at the Human Rights Data Analysis Group (and letter signatory), fears that “in order to flag even a small proportion of future terrorists, this tool will likely flag a huge number of people who would never go on to be terrorists,” and that “these ‘false positives’ will be real people who would never have gone on to commit criminal acts but will suffer the consequences of being flagged just the same.”


Crean sistema para predecir fosas clandestinas en México

Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.


Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero

El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.


Fosas clandestinas en México manifiestan existencia de crímenes de lesa humanidad

Patrick Ball, estadístico norteamericano, colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana en una investigación sobre fosas clandestinas.


The ghost in the machine

“Every kind of classification system – human or machine – has several kinds of errors it might make,” [Patrick Ball] says. “To frame that in a machine learning context, what kind of error do we want the machine to make?” HRDAG’s work on predictive policing shows that “predictive policing” finds patterns in police records, not patterns in occurrence of crime.


Nonprofits Are Taking a Wide-Eyed Look at What Data Could Do

In this story about how data are transforming the nonprofit world, Patrick Ball is quoted. Here’s an excerpt: “Data can have a profound impact on certain problems, but nonprofits are kidding themselves if they think the data techniques used by corporations can be applied wholesale to social problems,” says Patrick Ball, head of the nonprofit Human Rights Data Analysis Group.
Companies, he says, maintain complete data sets. A business knows every product it made last year, when it sold, and to whom. Charities, he says, are a different story.
“If you’re looking at poverty or trafficking or homicide, we don’t have all the data, and we’re not going to,” he says. “That’s why these amazing techniques that the industry people have are great in industry, but they don’t actually generalize to our space very well.”


Machine learning is being used to uncover the mass graves of Mexico’s missing

“Patrick Ball, HRDAG’s Director of Research and the statistician behind the code, explained that the Random Forest classifier was able to predict with 100% accuracy which counties that would go on to have mass graves found in them in 2014 by using the model against data from 2013. The model also predicted the counties that did not have mass hidden graves found in them, but that show a high likelihood of the possibility. This prediction aspect of the model is the part that holds the most potential for future research.”


R programming language demands the right use case

Megan Price, director of research, is quoted in this story about the R programming language. “Serious data analysis is not something you’re going to do using a mouse and drop-down boxes,” said HRDAG’s director of research Megan Price. “It’s the kind of thing you’re going to do getting close to the data, getting close to the code and writing some of it yourself.”


Hunting for Mexico’s mass graves with machine learning

“The model uses obvious predictor variables, Ball says, such as whether or not a drug lab has been busted in that county, or if the county borders the United States, or the ocean, but also includes less-obvious predictor variables such as the percentage of the county that is mountainous, the presence of highways, and the academic results of primary and secondary school students in the county.”


What happens when you look at crime by the numbers

Kristian Lum’s work on the HRDAG Policing Project is referred to here: “In fact, Lum argues, it’s not clear how well this model worked at depicting the situation in Oakland. Those data on drug crimes were biased, she now reports. The problem was not deliberate, she says. Rather, data collectors just missed some criminals and crime sites. So data on them never made it into her model.”


Documenting Syrian Deaths with Data Science

Coverage of Megan Price at the Women in Data Science Conference held at Stanford University. “Price discussed her organization’s behind-the-scenes work to collect and analyze data on the ground for human rights advocacy organizations. HRDAG partners with a wide variety of human rights organizations, including local grassroots non-governmental groups and—most notably—multiple branches of the United Nations.”


Amnesty International Reports Organized Murder Of Detainees In Syrian Prison

100x100nprReports of torture and disappearances in Syria are not new. But the Amnesty International report says the magnitude and severity of abuse has “increased drastically” since 2011. Citing the Human Rights Data Analysis Group, the report says “at least 17,723 people were killed in government custody between March 2011 and December 2015, an average of 300 deaths each month.”


How data science is changing the face of human rights

100x100siliconangleOn the heels of the Women in Data Science conference, HRDAG executive director Megan Price says, “I think creativity and communication are probably the two most important skills for a data scientist to have these days.”


How statistics lifts the fog of war in Syria

Megan Price, director of research, is quoted from her Strata talk, regarding how to handle multiple data sources in conflicts such as the one in Syria. From the blogpost:
“The true number of casualties in conflicts like the Syrian war seems unknowable, but the mission of the Human Rights Data Analysis Group (HRDAG) is to make sense of such information, clouded as it is by the fog of war. They do this not by nominating one source of information as the “best”, but instead with statistical modeling of the differences between sources.”


“El reto de la estadística es encontrar lo escondido”: experto en manejo de datos sobre el conflicto

In this interview with Colombian newspaper El Espectador, Patrick Ball is quoted as saying “la gente que no conoce de álgebra nunca debería hacer estadísticas” (people who don’t know algebra should never do statistics).


Syria 2012 – Modeling Multiple Datasets in an Ongoing Conflict

The struggle between Syrian President Bashar al-Assad's regime and opposition forces has generated extensive global press coverage, but few accurate estimates of casualties. In January 2013, the United Nations Office of the High Commissioner for Human Rights (OHCHR) released a report on the number of conflict-related killings in Syria. The UN report is based on statistical analysis conducted by HRDAG scientists Megan Price, Jeff Klingner and Patrick Ball. This chapter examines HRDAG’s findings which compared information from a database collected by the Syrian government with six databases compiled by Syrian human rights activists and citizen ...

Our work has been used by truth commissions, international criminal tribunals, and non-governmental human rights organizations. We have worked with partners on projects on five continents.

Donate