660 results for search: %7B%EC%95%A0%EC%9D%B8%EB%A7%8C%EB%93%A4%EA%B8%B0%7D%20www%2Ctada%2Cpw%20%20%EC%97%B0%EC%84%B1%EC%83%81%ED%99%A9%EA%B7%B9%20%EC%97%B0%EC%84%B1%EC%84%B1%EC%83%81%EB%8B%B4%E2%89%AA%EC%97%B0%EC%84%B1%EC%84%B1%EC%9D%B8%E2%97%87%EC%97%B0%EC%84%B1%EC%84%B1%EC%9D%B8%EC%89%BC%ED%84%B0%E2%92%A9%E3%83%81%E9%B8%97journeyman/feed/content/colombia/privacy
Data-driven crime prediction fails to erase human bias
Work by HRDAG researchers Kristian Lum and William Isaac is cited in this article about the Policing Project: “While this bias knows no color or socioeconomic class, Lum and her HRDAG colleague William Isaac demonstrate that it can lead to policing that unfairly targets minorities and those living in poorer neighborhoods.”
R programming language demands the right use case
Megan Price, director of research, is quoted in this story about the R programming language. “Serious data analysis is not something you’re going to do using a mouse and drop-down boxes,” said HRDAG’s director of research Megan Price. “It’s the kind of thing you’re going to do getting close to the data, getting close to the code and writing some of it yourself.”
Crean sistema para predecir fosas clandestinas en México
Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.
Using Data and Statistics to Bring Down Dictators
In this story, Guerrini discusses the impact of HRDAG’s work in Guatemala, especially the trials of General José Efraín Ríos Montt and Colonel Héctor Bol de la Cruz, as well as work in El Salvador, Syria, Kosovo, and Timor-Leste. Multiple systems estimation and the perils of using raw data to draw conclusions are also addressed.
Megan Price and Patrick Ball are quoted, especially in regard to how to use raw data.
“From our perspective,” Price says, “the solution to that is both to stay very close to the data, to be very conservative in your interpretation of it and to be very clear about where the data came from, how it was collected, what its limitations might be, and to a certain extent to be skeptical about it, to ask yourself questions like, ‘What is missing from this data?’ and ‘How might that missing information change these conclusions that I’m trying to draw?’”