698 results for search: %ED%99%8D%EB%B3%B4%EC%A0%84%EB%AC%B8%E3%85%BF%ED%85%94%EB%A0%88adgogo%E3%85%BF%EA%B0%81%EC%82%B0%EA%B1%B4%EC%A0%84%EB%A7%88%EC%82%AC%EC%A7%80%E3%81%BF%ED%99%8D%EB%B3%B4%E2%94%BA%EC%A0%84%EB%AC%B8%E2%82%AA%EA%B0%81%EC%82%B0%E4%9D%90%EA%B1%B4%EC%A0%84%EB%A7%88%EC%82%AC%EC%A7%80%E7%AE%A0nonbeing/feed/rss2/jeffklinger/privacy


Death Numbers


Data Security or Death


The Atrocity Archives


Martus: Software for Human Rights Groups


Can ‘predictive policing’ prevent crime before it happens?

100x100-sciencemagHRDAG analyst William Isaac is quoted in this article about so-called crime prediction. “They’re not predicting the future. What they’re actually predicting is where the next recorded police observations are going to occur.”


Setting the Record Straight


Amnesty report damns Syrian government on prison abuse

100x100-dwnewsAn excerpt: The “It breaks the human” report released by the human rights group Amnesty International highlights new statistics from the Human Rights Data Analysis Group, or HRDAG, an organization that uses scientific approaches to analyze human rights violations.


Documenting Syrian Deaths with Data Science

Coverage of Megan Price at the Women in Data Science Conference held at Stanford University. “Price discussed her organization’s behind-the-scenes work to collect and analyze data on the ground for human rights advocacy organizations. HRDAG partners with a wide variety of human rights organizations, including local grassroots non-governmental groups and—most notably—multiple branches of the United Nations.”


Megan Price: Life-Long ‘Math Nerd’ Finds Career in Social Justice

“I was always a math nerd. My mother has a polaroid of me in the fourth grade with my science fair project … . It was the history of mathematics. In college, I was a math major for a year and then switched to statistics.

I always wanted to work in social justice. I was raised by hippies, went to protests when I was young. I always felt I had an obligation to make the world a little bit better.”


Mining data on mutilations, beatings, murders


A better statistical estimation of known Syrian war victims

Researchers from Rice University and Duke University are using the tools of statistics and data science in collaboration with Human Rights Data Analysis Group (HRDAG) to accurately and efficiently estimate the number of identified victims killed in the Syrian civil war.

Using records from four databases of people killed in the Syrian war, Chen, Duke statistician and machine learning expert Rebecca Steorts and Rice computer scientist Anshumali Shrivastava estimated there were 191,874 unique individuals documented from March 2011 to April 2014. That’s very close to the estimate of 191,369 compiled in 2014 by HRDAG, a nonprofit that helps build scientifically defensible, evidence-based arguments of human rights violations.


Trump’s “extreme-vetting” software will discriminate against immigrants “Under a veneer of objectivity,” say experts

Kristian Lum, lead statistician at the Human Rights Data Analysis Group (and letter signatory), fears that “in order to flag even a small proportion of future terrorists, this tool will likely flag a huge number of people who would never go on to be terrorists,” and that “these ‘false positives’ will be real people who would never have gone on to commit criminal acts but will suffer the consequences of being flagged just the same.”


Calculations for the Greater Good

Rollins School of Public HealthAs executive director of the Human Rights Data Analysis Group, Megan Price uses statistics to shine the light on human rights abuses.


The Quiet Revolution


Crean sistema para predecir fosas clandestinas en México

Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.


What happens when you look at crime by the numbers

Kristian Lum’s work on the HRDAG Policing Project is referred to here: “In fact, Lum argues, it’s not clear how well this model worked at depicting the situation in Oakland. Those data on drug crimes were biased, she now reports. The problem was not deliberate, she says. Rather, data collectors just missed some criminals and crime sites. So data on them never made it into her model.”


Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero

El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.


Fosas clandestinas en México manifiestan existencia de crímenes de lesa humanidad

Patrick Ball, estadístico norteamericano, colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana en una investigación sobre fosas clandestinas.


The ghost in the machine

“Every kind of classification system – human or machine – has several kinds of errors it might make,” [Patrick Ball] says. “To frame that in a machine learning context, what kind of error do we want the machine to make?” HRDAG’s work on predictive policing shows that “predictive policing” finds patterns in police records, not patterns in occurrence of crime.


5 Questions for Kristian Lum

Kristian Lum discusses the challenges of getting accurate data from conflict zones, as well as her concerns about predictive policing if law enforcement gets it wrong.


Our work has been used by truth commissions, international criminal tribunals, and non-governmental human rights organizations. We have worked with partners on projects on five continents.

Donate