602 results for search: %EC%9D%B8%ED%84%B0%EB%84%B7%ED%99%8D%EB%B3%B4%E2%96%B2%E0%B4%A0%E2%9D%B6%E0%B4%A0%2B%E2%9D%BD%E2%9D%BD%E2%9D%BC%E2%9D%BB%2B%E2%9D%BD%E2%9D%BC%E2%9D%BC%E2%9D%BD%E2%96%B2%EC%83%81%ED%95%98%EB%8F%99%EC%95%88%EB%A7%88%E3%81%AB%EC%9D%B8%ED%84%B0%EB%84%B7%E2%94%9A%ED%99%8D%EB%B3%B4%E2%86%92%EC%83%81%ED%95%98%EB%8F%99%E5%AA%99%EC%95%88%EB%A7%88%E4%A2%8Ddesklight/feed/rss2/copyright
A look at the top contenders for the 2022 Nobel Peace Prize
The Washington Post’s Paul Schemm recognized HRDAG’s work in Syria, in the category of research and activism. “HRDAG gained renown at the start of the war, when it was one of the few organizations that tried to put a number on the war’s enormous toll in Syrian lives.”
The World According to Artificial Intelligence (Part 2)
The World According to Artificial Intelligence – The Bias in the Machine (Part 2)
Artificial intelligence might be a technological revolution unlike any other, transforming our homes, our work, our lives; but for many – the poor, minority groups, the people deemed to be expendable – their picture remains the same.
Patrick Ball is interviewed: “The question should be, Who bears the cost when a system is wrong?”
El científico que usa estadísticas para encontrar desaparecidos en El Salvador, Guatemala y México
Patrick Ball es un sabueso de la verdad. Ese deseo de descubrir lo que otros quieren ocultar lo ha llevado a desarrollar fórmulas matemáticas para detectar desaparecidos.
Su trabajo consiste en aplicar métodos de medición científica para comprobar violaciones masivas de derechos humanos.
What HBR Gets Wrong About Algorithms and Bias
“Kristian Lum… organized a workshop together with Elizabeth Bender, a staff attorney for the NY Legal Aid Society and former public defender, and Terrence Wilkerson, an innocent man who had been arrested and could not afford bail. Together, they shared first hand experience about the obstacles and inefficiencies that occur in the legal system, providing valuable context to the debate around COMPAS.”
Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero
El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.
Mapping Mexico’s hidden graves
When Patrick Ball was introduced to Ibero’s database, the director of research at the Human Rights Data Analysis Group in San Francisco, California, saw an opportunity to turn the data into a predictive model. Ball, who has used similar models to document human rights violations from Syria to Guatemala, soon invited Data Cívica, a Mexico City–based nonprofit that creates tools for analyzing data, to join the project.
Crean sistema para predecir fosas clandestinas en México
Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.
Trump’s “extreme-vetting” software will discriminate against immigrants “Under a veneer of objectivity,” say experts
Kristian Lum, lead statistician at the Human Rights Data Analysis Group (and letter signatory), fears that “in order to flag even a small proportion of future terrorists, this tool will likely flag a huge number of people who would never go on to be terrorists,” and that “these ‘false positives’ will be real people who would never have gone on to commit criminal acts but will suffer the consequences of being flagged just the same.”
Celebrating Women in Statistics
In her work on statistical issues in criminal justice, Lum has studied uses of predictive policing—machine learning models to predict who will commit future crime or where it will occur. In her work, she has demonstrated that if the training data encodes historical patterns of racially disparate enforcement, predictions from software trained with this data will reinforce and—in some cases—amplify this bias. She also currently works on statistical issues related to criminal “risk assessment” models used to inform judicial decision-making. As part of this thread, she has developed statistical methods for removing sensitive information from training data, guaranteeing “fair” predictions with respect to sensitive variables such as race and gender. Lum is active in the fairness, accountability, and transparency (FAT) community and serves on the steering committee of FAT, a conference that brings together researchers and practitioners interested in fairness, accountability, and transparency in socio-technical systems.
A better statistical estimation of known Syrian war victims
Researchers from Rice University and Duke University are using the tools of statistics and data science in collaboration with Human Rights Data Analysis Group (HRDAG) to accurately and efficiently estimate the number of identified victims killed in the Syrian civil war.
…
Using records from four databases of people killed in the Syrian war, Chen, Duke statistician and machine learning expert Rebecca Steorts and Rice computer scientist Anshumali Shrivastava estimated there were 191,874 unique individuals documented from March 2011 to April 2014. That’s very close to the estimate of 191,369 compiled in 2014 by HRDAG, a nonprofit that helps build scientifically defensible, evidence-based arguments of human rights violations.
Megan Price: Life-Long ‘Math Nerd’ Finds Career in Social Justice
“I was always a math nerd. My mother has a polaroid of me in the fourth grade with my science fair project … . It was the history of mathematics. In college, I was a math major for a year and then switched to statistics.
I always wanted to work in social justice. I was raised by hippies, went to protests when I was young. I always felt I had an obligation to make the world a little bit better.”
Cifra de líderes sociales asesinados es más alta: Dejusticia
Contrario a lo que se puede pensar, los datos oficiales sobre líderes sociales asesinados no necesariamente corresponden a la realidad y podría haber mucha mayor victimización en las regiones golpeadas por este flagelo, según el más reciente informe del Centro de Estudios de Justicia, Derecho y Sociedad (Dejusticia) en colaboración con el Human Rights Data Analysis Group.
Justice by the Numbers
Wilkerson was speaking at the inaugural Conference on Fairness, Accountability, and Transparency, a gathering of academics and policymakers working to make the algorithms that govern growing swaths of our lives more just. The woman who’d invited him there was Kristian Lum, the 34-year-old lead statistician at the Human Rights Data Analysis Group, a San Francisco-based non-profit that has spent more than two decades applying advanced statistical models to expose human rights violations around the world. For the past three years, Lum has deployed those methods to tackle an issue closer to home: the growing use of machine learning tools in America’s criminal justice system.
Using statistics to estimate the true scope of the secret killings at the end of the Sri Lankan civil war
In the last three days of the Sri Lankan civil war, as thousands of people surrendered to government authorities, hundreds of people were put on buses driven by Army officers. Many were never seen again.
In a report released today (see here), the International Truth and Justice Project for Sri Lanka and the Human Rights Data Analysis Group showed that over 500 people were disappeared on only three days — 17, 18, and 19 May.



