658 results for search: %EB%A7%88%EC%BC%80%ED%8C%85%ED%8C%80%E2%99%A0%E0%B4%A0%E2%9D%B6%E0%B4%A0%2B%E2%9D%BD%E2%9D%BD%E2%9D%BC%E2%9D%BB%2B%E2%9D%BD%E2%9D%BC%E2%9D%BC%E2%9D%BD%E2%99%A0%EB%8F%84%EC%95%94%EB%A9%B4%EB%AA%A8%ED%85%94%E3%84%A5%EB%A7%88%EC%BC%80%ED%8C%85%E2%94%8E%ED%8C%80%16%EB%8F%84%EC%95%94%EB%A9%B4%E8%A8%97%EB%AA%A8%ED%85%94%E3%9D%B2conventicle/feed/content/colombia/privacy
Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero
El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.
Crean sistema para predecir fosas clandestinas en México
Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.
Trump’s “extreme-vetting” software will discriminate against immigrants “Under a veneer of objectivity,” say experts
Kristian Lum, lead statistician at the Human Rights Data Analysis Group (and letter signatory), fears that “in order to flag even a small proportion of future terrorists, this tool will likely flag a huge number of people who would never go on to be terrorists,” and that “these ‘false positives’ will be real people who would never have gone on to commit criminal acts but will suffer the consequences of being flagged just the same.”
USA
Celebrating Women in Statistics
In her work on statistical issues in criminal justice, Lum has studied uses of predictive policing—machine learning models to predict who will commit future crime or where it will occur. In her work, she has demonstrated that if the training data encodes historical patterns of racially disparate enforcement, predictions from software trained with this data will reinforce and—in some cases—amplify this bias. She also currently works on statistical issues related to criminal “risk assessment” models used to inform judicial decision-making. As part of this thread, she has developed statistical methods for removing sensitive information from training data, guaranteeing “fair” predictions with respect to sensitive variables such as race and gender. Lum is active in the fairness, accountability, and transparency (FAT) community and serves on the steering committee of FAT, a conference that brings together researchers and practitioners interested in fairness, accountability, and transparency in socio-technical systems.
What happens when you look at crime by the numbers
Kristian Lum’s work on the HRDAG Policing Project is referred to here: “In fact, Lum argues, it’s not clear how well this model worked at depicting the situation in Oakland. Those data on drug crimes were biased, she now reports. The problem was not deliberate, she says. Rather, data collectors just missed some criminals and crime sites. So data on them never made it into her model.”
A better statistical estimation of known Syrian war victims
Researchers from Rice University and Duke University are using the tools of statistics and data science in collaboration with Human Rights Data Analysis Group (HRDAG) to accurately and efficiently estimate the number of identified victims killed in the Syrian civil war.
…
Using records from four databases of people killed in the Syrian war, Chen, Duke statistician and machine learning expert Rebecca Steorts and Rice computer scientist Anshumali Shrivastava estimated there were 191,874 unique individuals documented from March 2011 to April 2014. That’s very close to the estimate of 191,369 compiled in 2014 by HRDAG, a nonprofit that helps build scientifically defensible, evidence-based arguments of human rights violations.
Megan Price: Life-Long ‘Math Nerd’ Finds Career in Social Justice
“I was always a math nerd. My mother has a polaroid of me in the fourth grade with my science fair project … . It was the history of mathematics. In college, I was a math major for a year and then switched to statistics.
I always wanted to work in social justice. I was raised by hippies, went to protests when I was young. I always felt I had an obligation to make the world a little bit better.”
What HBR Gets Wrong About Algorithms and Bias
“Kristian Lum… organized a workshop together with Elizabeth Bender, a staff attorney for the NY Legal Aid Society and former public defender, and Terrence Wilkerson, an innocent man who had been arrested and could not afford bail. Together, they shared first hand experience about the obstacles and inefficiencies that occur in the legal system, providing valuable context to the debate around COMPAS.”
Cifra de líderes sociales asesinados es más alta: Dejusticia
Contrario a lo que se puede pensar, los datos oficiales sobre líderes sociales asesinados no necesariamente corresponden a la realidad y podría haber mucha mayor victimización en las regiones golpeadas por este flagelo, según el más reciente informe del Centro de Estudios de Justicia, Derecho y Sociedad (Dejusticia) en colaboración con el Human Rights Data Analysis Group.
The Forensic Humanitarian
International human rights work attracts activists and lawyers, diplomats and retired politicians. One of the most admired figures in the field, however, is a ponytailed statistics guru from Silicon Valley named Patrick Ball, who has spent nearly two decades fashioning a career for himself at the intersection of mathematics and murder. You could call him a forensic humanitarian.
A Human Rights Statistician Finds Truth In Numbers
The tension started in the witness room. “You could feel the stress rolling off the walls in there,” Patrick Ball remembers. “I can remember realizing that this is why lawyers wear sport coats – you can’t see all the sweat on their arms and back.” He was, you could say, a little nervous to be cross-examined by Slobodan Milosevic.
Using statistics to estimate the true scope of the secret killings at the end of the Sri Lankan civil war
In the last three days of the Sri Lankan civil war, as thousands of people surrendered to government authorities, hundreds of people were put on buses driven by Army officers. Many were never seen again.
In a report released today (see here), the International Truth and Justice Project for Sri Lanka and the Human Rights Data Analysis Group showed that over 500 people were disappeared on only three days — 17, 18, and 19 May.
Documenting Syrian Deaths with Data Science
Coverage of Megan Price at the Women in Data Science Conference held at Stanford University. “Price discussed her organization’s behind-the-scenes work to collect and analyze data on the ground for human rights advocacy organizations. HRDAG partners with a wide variety of human rights organizations, including local grassroots non-governmental groups and—most notably—multiple branches of the United Nations.”
R programming language demands the right use case
Megan Price, director of research, is quoted in this story about the R programming language. “Serious data analysis is not something you’re going to do using a mouse and drop-down boxes,” said HRDAG’s director of research Megan Price. “It’s the kind of thing you’re going to do getting close to the data, getting close to the code and writing some of it yourself.”
Direct procès Habré: le taux de mortalité dans les centres de détention, au menu des débats
Statisticien, Patrick Ball est à la barre ce vendredi matin. L’expert est entendu sur le taux de mortalité dans les centres de détention au Tchad sous Habré. Désigné par la chambre d’accusation, il dira avoir axé ses travaux sur des témoignages, des données venant des victimes et des documents de la DDS (Direction de la Documentation et de la Sécurité).


