711 results for search: %E3%80%8E%EB%85%BC%EC%82%B0%EB%8C%80%ED%99%94%E3%80%8F%20%D5%956%D5%95%E3%85%A19%D5%952%E3%85%A18998%20%EB%8F%BC%EC%A7%80%EB%9D%A0%EB%8F%8C%EC%8B%B1%EB%AA%A8%EC%9E%84%20%EC%84%B1%EC%9D%B8%EB%8D%B0%EC%9D%B4%ED%8C%85%E2%9C%BA%EB%AA%B8%EB%A7%A4%EB%85%80%EB%A7%8C%EB%82%A8%E3%8B%97%EB%B9%84%EA%B3%B5%EA%B0%9C%EB%8C%80%ED%99%94%20%E3%83%90%E5%84%AD%20herbarium/feed/content/colombia/copyright
Sous la dictature d’Hissène Habré, le ridicule tuait
Patrick Ball, un expert en statistiques engagé par les Chambres africaines extraordinaires, a conclu que la « mortalité dans les prisons de la DDS fut substantiellement plus élevée que celles des pires contextes du XXe siècle de prisonniers de guerre ».
Data Mining on the Side of the Angels
“Data, by itself, isn’t truth.” How HRDAG uses data analysis and statistical methods to shed light on mass human rights abuses. Executive director Patrick Ball is quoted from his speech at the Chaos Communication Congress in Hamburg, Germany.
Death March
A mapped representation of the scale and spread of killings in Syria. HRDAG’s director of research, Megan Price, is quoted.
Inside the Difficult, Dangerous Work of Tallying the ISIS Death Toll
HRDAG executive director Megan Price is interviewed by Mother Jones. An excerpt: “Violence can be hidden,” says Price. “ISIS has its own agenda. Sometimes that agenda is served by making public things they’ve done, and I have to assume, sometimes it’s served by hiding things they’ve done.”
New UN report counts 191,369 Syrian-war deaths — but the truth is probably much, much worse
Amanda Taub of Vox has interviewed HRDAG executive director about the UN Office of the High Commissioner of Human Right’s release of HRDAG’s third report on reported killings in the Syrian conflict.
From the article:
Patrick Ball, Executive Director of the Human Rights Data Analysis Group and one of the report’s authors, explained to me that this new report is not a statistical estimate of the number of people killed in the conflict so far. Rather, it’s an actual list of specific victims who have been identified by name, date, and location of death. (The report only tracked violent killings, not “excess mortality” deaths from from disease or hunger that the conflict is causing indirectly.)
Weapons of Math Destruction
Weapons of Math Destruction: invisible, ubiquitous algorithms are ruining millions of lives. Excerpt:
As Patrick once explained to me, you can train an algorithm to predict someone’s height from their weight, but if your whole training set comes from a grade three class, and anyone who’s self-conscious about their weight is allowed to skip the exercise, your model will predict that most people are about four feet tall. The problem isn’t the algorithm, it’s the training data and the lack of correction when the model produces erroneous conclusions.
The Data Scientist Helping to Create Ethical Robots
Kristian Lum is focusing on artificial intelligence and the controversial use of predictive policing and sentencing programs.
What’s the relationship between statistics and AI and machine learning?
AI seems to be a sort of catchall for predictive modeling and computer modeling. There was this great tweet that said something like, “It’s AI when you’re trying to raise money, ML when you’re trying to hire developers, and statistics when you’re actually doing it.” I thought that was pretty accurate.
Celebrating Women in Statistics
In her work on statistical issues in criminal justice, Lum has studied uses of predictive policing—machine learning models to predict who will commit future crime or where it will occur. In her work, she has demonstrated that if the training data encodes historical patterns of racially disparate enforcement, predictions from software trained with this data will reinforce and—in some cases—amplify this bias. She also currently works on statistical issues related to criminal “risk assessment” models used to inform judicial decision-making. As part of this thread, she has developed statistical methods for removing sensitive information from training data, guaranteeing “fair” predictions with respect to sensitive variables such as race and gender. Lum is active in the fairness, accountability, and transparency (FAT) community and serves on the steering committee of FAT, a conference that brings together researchers and practitioners interested in fairness, accountability, and transparency in socio-technical systems.
Megan Price: Life-Long ‘Math Nerd’ Finds Career in Social Justice
“I was always a math nerd. My mother has a polaroid of me in the fourth grade with my science fair project … . It was the history of mathematics. In college, I was a math major for a year and then switched to statistics.
I always wanted to work in social justice. I was raised by hippies, went to protests when I was young. I always felt I had an obligation to make the world a little bit better.”