698 results for search: %ED%99%8D%EB%B3%B4%EC%A0%84%EB%AC%B8%E3%85%BF%ED%85%94%EB%A0%88adgogo%E3%85%BF%EA%B0%81%EC%82%B0%EA%B1%B4%EC%A0%84%EB%A7%88%EC%82%AC%EC%A7%80%E3%81%BF%ED%99%8D%EB%B3%B4%E2%94%BA%EC%A0%84%EB%AC%B8%E2%82%AA%EA%B0%81%EC%82%B0%E4%9D%90%EA%B1%B4%EC%A0%84%EB%A7%88%EC%82%AC%EC%A7%80%E7%AE%A0nonbeing/feed/rss2/jeffklinger/copyright
Weapons of Math Destruction
Weapons of Math Destruction: invisible, ubiquitous algorithms are ruining millions of lives. Excerpt:
As Patrick once explained to me, you can train an algorithm to predict someone’s height from their weight, but if your whole training set comes from a grade three class, and anyone who’s self-conscious about their weight is allowed to skip the exercise, your model will predict that most people are about four feet tall. The problem isn’t the algorithm, it’s the training data and the lack of correction when the model produces erroneous conclusions.
Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero
El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.
Crean sistema para predecir fosas clandestinas en México
Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.
A better statistical estimation of known Syrian war victims
Researchers from Rice University and Duke University are using the tools of statistics and data science in collaboration with Human Rights Data Analysis Group (HRDAG) to accurately and efficiently estimate the number of identified victims killed in the Syrian civil war.
…
Using records from four databases of people killed in the Syrian war, Chen, Duke statistician and machine learning expert Rebecca Steorts and Rice computer scientist Anshumali Shrivastava estimated there were 191,874 unique individuals documented from March 2011 to April 2014. That’s very close to the estimate of 191,369 compiled in 2014 by HRDAG, a nonprofit that helps build scientifically defensible, evidence-based arguments of human rights violations.
Trump’s “extreme-vetting” software will discriminate against immigrants “Under a veneer of objectivity,” say experts
Kristian Lum, lead statistician at the Human Rights Data Analysis Group (and letter signatory), fears that “in order to flag even a small proportion of future terrorists, this tool will likely flag a huge number of people who would never go on to be terrorists,” and that “these ‘false positives’ will be real people who would never have gone on to commit criminal acts but will suffer the consequences of being flagged just the same.”
Courts and police departments are turning to AI to reduce bias, but some argue it’ll make the problem worse
Kristian Lum: “The historical over-policing of minority communities has led to a disproportionate number of crimes being recorded by the police in those locations. Historical over-policing is then passed through the algorithm to justify the over-policing of those communities.”
Documenting Syrian Deaths with Data Science
Coverage of Megan Price at the Women in Data Science Conference held at Stanford University. “Price discussed her organization’s behind-the-scenes work to collect and analyze data on the ground for human rights advocacy organizations. HRDAG partners with a wide variety of human rights organizations, including local grassroots non-governmental groups and—most notably—multiple branches of the United Nations.”
What happens when you look at crime by the numbers
Kristian Lum’s work on the HRDAG Policing Project is referred to here: “In fact, Lum argues, it’s not clear how well this model worked at depicting the situation in Oakland. Those data on drug crimes were biased, she now reports. The problem was not deliberate, she says. Rather, data collectors just missed some criminals and crime sites. So data on them never made it into her model.”
AI for Human Rights
From the article: “Price described the touchstone of her organization as being a tension between how truth is simultaneously discovered and obscured. HRDAG is at the intersection of this tension; they are consistently participating in science’s progressive uncovering of what is true, but they are accustomed to working in spaces where this truth is denied. Of the many responsibilities HRDAG holds in its work is that of “speaking truth to power,” said Price, “and if that’s what you’re doing, you have to know that your truth stands up to adversarial environments.”
The Untold Dead of Rodrigo Duterte’s Philippines Drug War
From the article: “Based on Ball’s calculations, using our data, nearly 3,000 people could have been killed in the three areas we analyzed in the first 18 months of the drug war. That is more than three times the official police count.”
El científico que usa estadísticas para encontrar desaparecidos en El Salvador, Guatemala y México
Patrick Ball es un sabueso de la verdad. Ese deseo de descubrir lo que otros quieren ocultar lo ha llevado a desarrollar fórmulas matemáticas para detectar desaparecidos.
Su trabajo consiste en aplicar métodos de medición científica para comprobar violaciones masivas de derechos humanos.
Hunting for Mexico’s mass graves with machine learning
“The model uses obvious predictor variables, Ball says, such as whether or not a drug lab has been busted in that county, or if the county borders the United States, or the ocean, but also includes less-obvious predictor variables such as the percentage of the county that is mountainous, the presence of highways, and the academic results of primary and secondary school students in the county.”
Justice by the Numbers
Wilkerson was speaking at the inaugural Conference on Fairness, Accountability, and Transparency, a gathering of academics and policymakers working to make the algorithms that govern growing swaths of our lives more just. The woman who’d invited him there was Kristian Lum, the 34-year-old lead statistician at the Human Rights Data Analysis Group, a San Francisco-based non-profit that has spent more than two decades applying advanced statistical models to expose human rights violations around the world. For the past three years, Lum has deployed those methods to tackle an issue closer to home: the growing use of machine learning tools in America’s criminal justice system.