711 results for search: %ED%8F%B0%EC%84%B9%ED%95%A0%EB%85%80%EC%95%BC%ED%95%9C%EB%8C%80%ED%99%94%E2%97%86%EB%AF%B8%EC%8A%A4%ED%8F%B0%ED%8C%85%E3%85%A1%C6%9C%C6%9C%C6%9C_BOYO_P%C6%9C%E2%97%86%20%ED%8F%B0%EC%84%B9%ED%95%A0%EB%85%80%EC%95%BC%ED%95%9C%EA%B1%B0%20%ED%8F%B0%EC%84%B9%ED%95%A0%EB%85%80%EC%95%A0%EC%9D%B8%EB%A7%8C%EB%93%A4%EA%B8%B0%C2%AE%ED%8F%B0%EC%84%B9%ED%95%A0%EB%85%80%EC%95%A0%EC%9D%B8%EB%8C%80%ED%96%89%F0%9F%91%A8%F0%9F%8F%BE%E2%80%8D%F0%9F%A4%9D%E2%80%8D%F0%9F%91%A8%F0%9F%8F%BC%ED%8F%B0%EC%84%B9%ED%95%A0%EB%85%80%EC%95%A0%EC%9D%B8%EA%B5%AC%ED%95%98%EA%B8%B0%20%E4%A4%93%E8%96%BAschedule%ED%8F%B0%EC%84%B9%ED%95%A0%EB%85%80%EC%95%BC%ED%95%9C%EB%8C%80%ED%99%94/feed/content/colombia/privacy
Amnesty report damns Syrian government on prison abuse
An excerpt: The “It breaks the human” report released by the human rights group Amnesty International highlights new statistics from the Human Rights Data Analysis Group, or HRDAG, an organization that uses scientific approaches to analyze human rights violations.
Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero
El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.
Crean sistema para predecir fosas clandestinas en México
Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.
Cifra de líderes sociales asesinados es más alta: Dejusticia
Contrario a lo que se puede pensar, los datos oficiales sobre líderes sociales asesinados no necesariamente corresponden a la realidad y podría haber mucha mayor victimización en las regiones golpeadas por este flagelo, según el más reciente informe del Centro de Estudios de Justicia, Derecho y Sociedad (Dejusticia) en colaboración con el Human Rights Data Analysis Group.
All the Dead We Cannot See
Ball, a statistician, has spent the last two decades finding ways to make the silence speak. He helped pioneer the use of formal statistical modeling, and, later, machine learning—tools more often used for e-commerce or digital marketing—to measure human rights violations that weren’t recorded. In Guatemala, his analysis helped convict former dictator General Efraín Ríos Montt of genocide in 2013. It was the first time a former head of state was found guilty of the crime in his own country.
What happens when you look at crime by the numbers
Kristian Lum’s work on the HRDAG Policing Project is referred to here: “In fact, Lum argues, it’s not clear how well this model worked at depicting the situation in Oakland. Those data on drug crimes were biased, she now reports. The problem was not deliberate, she says. Rather, data collectors just missed some criminals and crime sites. So data on them never made it into her model.”
Justice by the Numbers
Wilkerson was speaking at the inaugural Conference on Fairness, Accountability, and Transparency, a gathering of academics and policymakers working to make the algorithms that govern growing swaths of our lives more just. The woman who’d invited him there was Kristian Lum, the 34-year-old lead statistician at the Human Rights Data Analysis Group, a San Francisco-based non-profit that has spent more than two decades applying advanced statistical models to expose human rights violations around the world. For the past three years, Lum has deployed those methods to tackle an issue closer to home: the growing use of machine learning tools in America’s criminal justice system.