691 results for search: %7B%EC%95%A0%EC%9D%B8%EB%A7%8C%EB%93%A4%EA%B8%B0%7D%20WWW%E2%80%B8TADA%E2%80%B8PW%20%20%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%83%81%ED%99%A9%EA%B7%B9%20%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%84%B1%EC%83%81%EB%8B%B4%D0%B2%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%84%B1%EC%9D%B8%E2%86%95%EC%B2%9C%EA%B5%B0%EB%8F%99%EC%84%B1%EC%9D%B8%EC%89%BC%ED%84%B0%E3%88%A6%E3%81%B6%E6%A3%BCtranscend/feed/content/colombia/privacy
Celebrating our First Anniversary and Welcoming Our Newest Board Member
Predictive policing tools send cops to poor/black neighborhoods
In this post, Cory Doctorow writes about the Significance article co-authored by Kristian Lum and William Isaac.
Clustering and Solving the Right Problem
Our Thoughts on the Violence in Charlottesville
How Data Processing Uncovers Misconduct in Use of Force in Puerto Rico
El problema del asesinato a líderes es más grave de lo que se piensa
Una investigación de Dejusticia y Human Rights Data Analysis Group asegura que en Colombia hay un subregistro de los asesinatos de líderes sociales que se han perpetrado en Colombia. Al analizar las diferentes cifras de homicidios que han publicado diversas organizaciones desde 2016, se llegó a la conclusión que la problemática es mayor de lo que se cree.
About HRDAG
Using Machine Learning to Help Human Rights Investigators Sift Massive Datasets
Counting Civilian Casualties: An Introduction to Recording and Estimating Nonmilitary Deaths in Conflict
ed. by Taylor B. Seybolt, Jay D. Aronson, and Baruch Fischhoff. Oxford University Press. © 2013 Oxford University Press. All rights reserved.
The following four chapters are included:
— Todd Landman and Anita Gohdes (2013). “A Matter of Convenience: Challenges of Non-Random Data in Analyzing Human Rights Violations in Peru and Sierra Leone.”
— Jeff Klingner and Romesh Silva (2013). “Combining Found Data and Surveys to Measure Conflict Mortality.”
— Daniel Manrique-Vallier, Megan E. Price, and Anita Gohdes (2013). “Multiple-Systems Estimation Techniques for Estimating Casualties in Armed Conflict.”
— Jule Krüger, Patrick Ball, Megan Price, and Amelia Hoover Green (2013). “It Doesn’t Add Up: Methodological and Policy Implications of Conflicting Casualty Data.”
The UDHR Turns 70
Data Science Symposium at Vanderbilt
Recognising Uncertainty in Statistics
In Responsible Data Reflection Story #7—from the Responsible Data Forum—work by HRDAG affiliates Anita Gohdes and Brian Root is cited extensively to make the point about how quantitative data are the result of numerous subjective human decisions. An excerpt: “The Human Rights Data Analysis Group are pioneering the way in collecting and analysing figures of killings in conflict in a responsible way, using multiple systems estimation.”
The Allegheny Family Screening Tool’s Overestimation of Utility and Risk
Anjana Samant, Noam Shemtov, Kath Xu, Sophie Beiers, Marissa Gerchick, Ana Gutierrez, Aaron Horowitz, Tobi Jegede, Tarak Shah (2023). The Allegheny Family Screening Tool’s Overestimation of Utility and Risk. Logic(s). 13 December, 2023. Issue 20.
Technical Memo for Amnesty International Report on Deaths in Detention
Megan Price, Anita Gohdes and Patrick Ball (2016). Human Rights Data Analysis Group, commissioned by Amnesty International. August 17, 2016. © 2016 HRDAG. Creative Commons BY-NC-SA.
Statistics and Slobodan
Patrick Ball and Jana Asher (2002). “Statistics and Slobodan: Using Data Analysis and Statistics in the War Crimes Trial of Former President Milosevic.” Chance, vol. 15, No. 4, 2002. Reprinted with permission ofChance. © 2002 American Statistical Association. All rights reserved.
‘Bias deep inside the code’: the problem with AI ‘ethics’ in Silicon Valley
Kristian Lum, the lead statistician at the Human Rights Data Analysis Group, and an expert on algorithmic bias, said she hoped Stanford’s stumble made the institution think more deeply about representation.
“This type of oversight makes me worried that their stated commitment to the other important values and goals – like taking seriously creating AI to serve the ‘collective needs of humanity’ – is also empty PR spin and this will be nothing more than a vanity project for those attached to it,” she wrote in an email.
Quantifying Injustice
“In 2016, two researchers, the statistician Kristian Lum and the political scientist William Isaac, set out to measure the bias in predictive policing algorithms. They chose as their example a program called PredPol. … Lum and Isaac faced a conundrum: if official data on crimes is biased, how can you test a crime prediction model? To solve this technique, they turned to a technique used in statistics and machine learning called the synthetic population.”
Ciencia de datos para trazar un mapa de la crueldad a la mexicana
From the article: Esta entidad, que existe desde 1991, es liderada por su fundador, Patrick Ball, un científico que acumula una experiencia de más de 25 años realizando análisis cuantitativos en los lugares y en las situaciones más convulsos del planeta. Sobre su colaboración con el proyecto del predictor de fosas clandestinas en México, único en el mundo, Ball afirmó en entrevista:
“Cuando hablamos de crímenes de lesa humanidad estamos hablando de instituciones, de organizaciones grandes, cometiendo miles o centenares de miles de violaciones a víctimas distribuidas sobre una geografía enorme. Para entender los patrones en esas violaciones, la estadística puede brindar una mirada sobre quiénes son los responsables materiales e intelectuales, quiénes son las víctimas y dónde o cuándo pasaron esas violaciones. Pero la estadística no es contabilidad, pues no estamos hablando solamente de las violaciones que podemos ver, sino que también debemos calcular las violaciones no observadas, las escondidas, invisibles, para incluir en nuestro análisis la totalidad de las violaciones”.

