New publication in BIOMETRIKA

Fig 1A in Biometrika 2018 Theoretical limits of microclustering for record linkageTheoretical limits of microclustering for record linkage

SUMMARY  |  There has been substantial recent interest in record linkage, where one attempts to group the records pertaining to the same entities from one or more large databases that lack unique identifiers. This can be viewed as a type of microclustering, with few observations per cluster and a very large number of clusters. We show that the problem is fundamentally hard from a theoretical perspective and, even in idealized cases, accurate entity resolution is effectively impossible unless the number of entities is small relative to the number of records and/or the separation between records from different entities is extremely large. These results suggest conservatism in interpretation of the results of record linkage, support collection of additional data to more accurately disambiguate the entities, and motivate a focus on coarser inference. For example, results from a simulation study suggest that sometimes one may obtain accurate results for population size estimation even when fine-scale entity resolution is inaccurate.
James E Johndrow, Kristian Lum and D B Dunson (2018). Theoretical limits of microclustering for record linkage. Biometrika. 19 March 2018. © 2018 Oxford University Press. DOI 10.1093/biomet/asy003.

Our work has been used by truth commissions, international criminal tribunals, and non-governmental human rights organizations. We have worked with partners on projects on five continents.