713 results for search: %EB%8D%B0%EC%9D%B4%ED%8A%B8%EC%95%BC%EC%84%A4%EC%9D%B4%EC%95%BC%EA%B8%B0%E2%99%A4%ED%8C%9D%EC%BD%98%EB%B8%8C%EC%9D%B4%EC%95%8C%E2%99%88%CF%8E%CF%8E%CF%8E%2Cpopkon%2C%C3%97%C5%B7%C6%B6%E2%99%A4%20%EC%95%A0%EB%84%90%EC%98%81%ED%99%94%EC%8A%A4%ED%86%A0%EB%A6%AC%20%ED%83%84%EC%B2%9C%EB%A7%98%ED%95%98%EB%8A%94%E2%96%A1%EB%8F%84%EB%81%BC%EB%85%80%EC%97%89%EB%8D%A9%EC%9D%B42%E2%83%A3%EC%95%A0%EC%95%A1%EB%85%80%EC%98%81%ED%99%94%EC%8A%A4%ED%86%A0%EB%A6%AC%20%E7%86%9A%E9%88%86apostatize%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD/feed/content/colombia/privacy
El científico que usa estadísticas para encontrar desaparecidos en El Salvador, Guatemala y México
Patrick Ball es un sabueso de la verdad. Ese deseo de descubrir lo que otros quieren ocultar lo ha llevado a desarrollar fórmulas matemáticas para detectar desaparecidos.
Su trabajo consiste en aplicar métodos de medición científica para comprobar violaciones masivas de derechos humanos.
Justice by the Numbers
Wilkerson was speaking at the inaugural Conference on Fairness, Accountability, and Transparency, a gathering of academics and policymakers working to make the algorithms that govern growing swaths of our lives more just. The woman who’d invited him there was Kristian Lum, the 34-year-old lead statistician at the Human Rights Data Analysis Group, a San Francisco-based non-profit that has spent more than two decades applying advanced statistical models to expose human rights violations around the world. For the past three years, Lum has deployed those methods to tackle an issue closer to home: the growing use of machine learning tools in America’s criminal justice system.
What happens when you look at crime by the numbers
Kristian Lum’s work on the HRDAG Policing Project is referred to here: “In fact, Lum argues, it’s not clear how well this model worked at depicting the situation in Oakland. Those data on drug crimes were biased, she now reports. The problem was not deliberate, she says. Rather, data collectors just missed some criminals and crime sites. So data on them never made it into her model.”
100 Women in AI Ethics
We live in very challenging times. The pervasiveness of bias in AI algorithms and autonomous “killer” robots looming on the horizon, all necessitate an open discussion and immediate action to address the perils of unchecked AI. The decisions we make today will determine the fate of future generations. Please follow these amazing women and support their work so we can make faster meaningful progress towards a world with safe, beneficial AI that will help and not hurt the future of humanity.
53. Kristian Lum @kldivergence
R programming language demands the right use case
Megan Price, director of research, is quoted in this story about the R programming language. “Serious data analysis is not something you’re going to do using a mouse and drop-down boxes,” said HRDAG’s director of research Megan Price. “It’s the kind of thing you’re going to do getting close to the data, getting close to the code and writing some of it yourself.”
Sobre fosas clandestinas, tenemos más información que el gobierno: Ibero
El modelo “puede distinguir entre los municipios en que vamos a encontrar fosas clandestinas, y en los que es improbable que vayamos a encontrar estas fosas”, explicó Patrick Ball, estadístico estadounidense que colabora con el Programa de Derechos Humanos de la Universidad Iberoamericana de la Ciudad de México.
Crean sistema para predecir fosas clandestinas en México
Por ello, Human Rights Data Analysis Group (HRDAG), el Programa de Derechos Humanos de la Universidad Iberoamericana (UIA) y Data Cívica, realizan un análisis estadístico construido a partir de una variable en la que se identifican fosas clandestinas a partir de búsquedas automatizadas en medios locales y nacionales, y usando datos geográficos y sociodemográficos.