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Colombian conflict (1964—present)

From Wikipedia, the free encyclopedia

For other Colombia-related conflicts, see List of wars involving Colombia.

This article has multiple issues. Please help improve it or dis

Q talk page. |
» This article needs additional citations for verification. (u

« This article is outdated. (June 2013)

The Colombian conflict began approximately in 1964 or 1966 and is an ongoing low-
intensity asymmetric war between the Colombian government, drug gangs, paramilitary
groups and left-wing guerrillas such as the Revolutionary Armed Forces of Colombia, and

the National Liberation Army (ELN), fighting each other to increase their influence in
Colombian territory.[18ll18]120][21][22][23]{24](25)
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Casualties and losses

g Ay and Police: 4,286 FARC: 12,981 demobilized
kiled, 13,076 injured (since  (since 2002°)

2002°) ELN: 2,789 demobiiized
(since 200218)
Since 2002, 34,512 querrillas
captured, 13,197 killed®®

total casualties=50,000-200,000('®
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Data from the Human Rights Data Analysis Group
(HRDAG)

NGOs and govt groups provide lists of killings in 1998-2007, Casanare,
Colombia: department of Colombia, population 300,000, BP oil pipeline,
much corruption and violence.

Goal: Estimate the number of killings in Casanare in years 1998-2007.
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log (i, k,) = Ao + Arks + Agko

= ENlye =
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General number of lists

k = (ki, ko, ..., k)
for example, if in lists 3, 4, and 6

=(0,0,1,1,0,1)

Independence model: log (k) = Ag + Ar1ky + ... 4+ Ak
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Data - from HRDAG

Matching:

Commission of Jurists

Year  Gender location

National Police

1998 male TAMARA

Year

Perpetrator

Gender

1998

FARC

male

6 lists contain among them 2619 observed killings.
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Data - from HRDAG

year IMLM PNO VP CcclJ CIN CCE
(govt) (govt) (govt) (NGO)  (NGO)  (NGO)
1998 1 0 0 14 13 3
1999 2 0 0 6 8 2
2000 213 0 5 22 23 0
2001 262 0 2 21 12 0
2002 268 1 0 33 9 0
2003 348 274 2 12 11 0
2004 412 324 295 14 11 1
2005 210 155 138 8 13 16
2006 104 71 26 3 2 15
2007 54 0 33 27 36 35
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We're far from the independence model

m Heterogeneity of a person’s recordability
m Groups collecting data interact

m Want yearly estimates, but very little data exist in

some years

m Groups operating in different but overlapping time

periods
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Heterogeneity of a person’s recordability

P;(0) = P(person with recordability 0 is recorded on list j)
|og ( Pj(egovt)
1-— Pj (egovt)

o ( P;(0nco)
1—-P;(@nco)

) = 0govt +A;j for j € govts

) =0nco T Ay forj e NGOs
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Heterogeneity of a person’s recordability

Let (Onco, 9govt) ~ P(GNGOy egovt)-
Then

log (k) = Ao + Arky + ... + Agke + (K O, kIOV)
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log(k) = Ag + Ar1ky + ... + Agke+

Z wNGijkj’ + Z wgovtkjkj/ + Z wmixk]-kj/

j,j’eNGOs j,j’€govts jENGOs,j’egovts

m Heterogeneity of a person’s recordability
m Groups collecting data interact
m Want yearly estimates, but very little data exist in some years

m Groups operating in different but overlapping time periods
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log (Hk(t]) = Aot + A1,tK1 + ... +Agtke+

Z ngokjkj/ + Z wgovtkjkj/ + Z wmixkjkj,

j.j’€ENGOs j.j’€govts jJENGOs,j’egovts

m Heterogeneity of a person’s recordability
m Groups collecting data interact
m Want yearly estimates, but very little data exist in some years

m Groups operating in different but overlapping time periods
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log (Hk(t]) = Aot + A1tk + ... + Ag 1Ko+

Z ngokjkj/ + Z wgo\,tkjkj/ + Z wmixkjkj/

j.j’€ENGOs j.j’€govts jJENGOs,j’egovts

At ~N(w, ) forj=1,..,6

m Heterogeneity of a person’s recordability
m Groups collecting data interact
m Want yearly estimates, but very little data exist in some years

m Groups operating in different but overlapping time periods
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AR1 Model

1 1 p ... p't
Aj .
: P
|y, p, T ~ N . T
A]’T
1 Gl L

m Heterogeneity of a person’s recordability
m Groups collecting data interact
m Want yearly estimates, but very little data exist in some years

m Groups operating in different but overlapping time periods
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Mixture Model

)\j,t | Yijt~ (1 _Y]',t)N(Hinactivey Giznactive) +Yj,tN(Hj.T2) for j=1,..6

Yj+ ~ Bern(p) independent
p ~ Unif(0,1)

m Heterogeneity of a person’s recordability

m Groups collecting data interact

m Want yearly estimates, but very little data exist in some years
m Groups operating in different but overlapping time periods
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Missing Data

Consider inactive lists as missing data [Zwane et al., 2004].

In year t, lists 3 and 4 are inactive.

(t) . (t) (t) (t) (t) (t)
Treat ng;q09 as margin ng;” g, and cells g;000, To1010. Mo11000 Mo1110 35

missing data.

Zeros from missing data (ZM) vs Zeros from sampling (ZS)
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Casanare Data Results
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Posterior Predictive Checks: M-ZS

Frequency

Number recorded once
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Simulations

Simulate from posterior predictive distribution of M-ZM,
M-ZS, and AR1-ZS fit to Casanare data.

Fit all the models.

m Coverage is similar for all models.

m Multilevel models have narrower intervals, and lower

bias.
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Recommendations

m In many applications, lists concentrate effort in different years,
locations, or demographics.

m If these groups are overlapping = fit joint models, to be able to
model more list interactions, and to borrow information across

strata.
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We recommend Multilevel Models

m In years with little data, we might not trust unpooled estimates -
high variance, likely to get extreme estimates.

m Exchangeability and normality can be assessed via posterior
predictive checks, relaxed by expanding the model.

m If we want monthly estimates at municipality-level, less and less
data per stratum.

m Colombia (2003-2011)
m Syria (2011-2013)
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N11Mi1+,Nyg, N ~ HGeom(n1+, N — ni+, TL_|_1)
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EM-like algorithm

E step:
T (s)
Al 2_s—1 Mo1010 e
01010 T (s) (s) (s) (s) ) Oretor
s=1 \ Ho1000 T Ho1010 T Ho1100 T Ho1110
M step:

Fit log-linear model to completed data {nl((t)}k#00000,00010,00100,00110-

Bayesian version [Dominici, 2000].
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Sensitivity Analysis: Choice of Wingctive, T2
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Posterior Predictive Checks: AR1-ZS
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Posterior Predictive Checks: M-ZM
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Generate data from M-ZM: Coverage
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Generate data from M-ZS: Coverage
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Generate data from AR1-ZS: Coverage
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Generate data from M-ZM: Bias

Average Bias
(log scale)
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Generate data from M-ZS: Bias

Average Bias
(log scale)
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Generate data from AR1-ZS: Bias

Average Bias
(log scale)
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Generate data from M-ZM: Interval Width
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Generate data from M-ZS: Interval Width
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Generate data from AR1-ZS: Interval Width
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Continuous Model Expansion

log (M((t)) = Aot + A1,tk1 + ... + AgtKe+

> wneokiky+ Y wgoutkikyr + > Wimixkjkjr
j,j’eNGOs j.j’€govts jENGOs,j’egovts

w; i ~ N (wNnGo. oNGo)
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Continuous Model Expansion: 3-way log-linear interactions

m Population heterogeneity = higher-order interactions.

m Story for list cooperations?
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Continuous Model Expansion: 3-way log-linear interactions

A Story:
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Continuous Model Expansion: 3-way log-linear interactions

m Cauchy priors - regularization [Gelman et al., 2008|

m Exchangeable based on NGO /govt
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