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Data from the Human Rights Data Analysis Group

(HRDAG)

NGOs and govt groups provide lists of killings in 1998-2007, Casanare,

Colombia: department of Colombia, population 300,000, BP oil pipeline,

much corruption and violence.

Goal: Estimate the number of killings in Casanare in years 1998-2007.
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nk1k2
∼ Pois(µk1k2

) independent
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log(µk1k2
) = λ0 + λ1k1 + λ2k2

⇒ Ê[N]MLE =
n1+n+1

n11
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General number of lists

k = (k1,k2, ...,kJ)

for example, if in lists 3, 4, and 6

= (0, 0, 1, 1, 0, 1)

Independence model: log(µk) = λ0 + λ1k1 + ... + λJkJ
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Data - from HRDAG

Matching:

Commission of Jurists

Year Gender location
...

1998 male TAMARA
...
...

National Police

Year Perpetrator Gender
...
...
...

1998 FARC male

6 lists contain among them 2619 observed killings.
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Data - from HRDAG

year IMLM

(govt)

PN0

(govt)

VP

(govt)

CCJ

(NGO)

CIN

(NGO)

CCE

(NGO)

1998 1 0 0 14 13 3

1999 2 0 0 6 8 2

2000 213 0 5 22 23 0

2001 262 0 2 21 12 0

2002 268 1 0 33 9 0

2003 348 274 2 12 11 0

2004 412 324 295 14 11 1

2005 210 155 138 8 13 16

2006 104 71 26 3 2 15

2007 54 0 33 27 36 35
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We’re far from the independence model

Heterogeneity of a person’s recordability

Groups collecting data interact

Want yearly estimates, but very little data exist in

some years

Groups operating in different but overlapping time

periods
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Heterogeneity of a person’s recordability

Pj(θ) = P(person with recordability θ is recorded on list j)

log

(
Pj(θgovt)

1 − Pj(θgovt)

)
= θgovt + λj for j ∈ govts

log

(
Pj(θNGO)

1 − Pj(θNGO)

)
= θNGO + λj for j ∈ NGOs
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Heterogeneity of a person’s recordability

Let (θNGO, θgovt) ∼ p(θNGO, θgovt).

Then

log(µk) = λ0 + λ1k1 + ... + λ6k6 + γ(k
NGO
+ ,kgovt+ )
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log(µk) = λ0 + λ1k1 + ... + λ6k6+∑
j,j′∈NGOs

ωNGOkjkj′ +
∑

j,j′∈govts

ωgovtkjkj′ +
∑

j∈NGOs,j′∈govts

ωmixkjkj′

Heterogeneity of a person’s recordability

Groups collecting data interact

Want yearly estimates, but very little data exist in some years

Groups operating in different but overlapping time periods
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log
(
µk

(t)
)
= λ0t + λ1,tk1 + ... + λ6,tk6+∑

j,j′∈NGOs

ωNGOkjkj′ +
∑

j,j′∈govts

ωgovtkjkj′ +
∑

j∈NGOs,j′∈govts

ωmixkjkj′

Heterogeneity of a person’s recordability

Groups collecting data interact

Want yearly estimates, but very little data exist in some years

Groups operating in different but overlapping time periods
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log
(
µk

(t)
)
= λ0t + λ1,tk1 + ... + λ6,tk6+∑

j,j′∈NGOs

ωNGOkjkj′ +
∑

j,j′∈govts

ωgovtkjkj′ +
∑

j∈NGOs,j′∈govts

ωmixkjkj′

λj,t ∼ N(µj, τ
2) for j = 1, ..., 6

Heterogeneity of a person’s recordability

Groups collecting data interact

Want yearly estimates, but very little data exist in some years

Groups operating in different but overlapping time periods
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AR1 Model


λj,1

...

λj,T

 | µj, ρ, τ2 ∼ N




µj
...
...

µj

 ,


1 ρ . . . ρT−1

ρ
. . . . . . . . .

...

ρT−1 1

 τ2

 .

Heterogeneity of a person’s recordability

Groups collecting data interact

Want yearly estimates, but very little data exist in some years

Groups operating in different but overlapping time periods
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Mixture Model

λj,t | γj,t ∼ (1 − γj,t)N(µinactive,σ2
inactive) + γj,tN(µj, τ

2) for j = 1, ..., 6

γj,t ∼ Bern(p) independent

p ∼ Unif(0, 1)

Heterogeneity of a person’s recordability

Groups collecting data interact

Want yearly estimates, but very little data exist in some years

Groups operating in different but overlapping time periods
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Missing Data

Consider inactive lists as missing data [Zwane et al., 2004].

In year t, lists 3 and 4 are inactive.

Treat n
(t)
01000 as margin n

(t)
01++0, and cells n

(t)
01000, n

(t)
01010, n

(t)
01100, n

(t)
01110 as

missing data.

Zeros from missing data (ZM) vs Zeros from sampling (ZS)
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Zeros from

missing

data

(ZM)

Zeros from

sampling

(ZS)

unpooled

main

effects

(U)

U-ZM U-ZS

Multilevel

model

(M)

M-ZM
M-ZS

AR1-ZS
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Posterior Predictive Checks: M-ZS
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Simulations

Simulate from posterior predictive distribution of M-ZM,

M-ZS, and AR1-ZS fit to Casanare data.

Fit all the models.

Coverage is similar for all models.

Multilevel models have narrower intervals, and lower

bias.
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Recommendations

In many applications, lists concentrate effort in different years,

locations, or demographics.

If these groups are overlapping ⇒ fit joint models, to be able to

model more list interactions, and to borrow information across

strata.
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We recommend Multilevel Models

In years with little data, we might not trust unpooled estimates -

high variance, likely to get extreme estimates.

Exchangeability and normality can be assessed via posterior

predictive checks, relaxed by expanding the model.

If we want monthly estimates at municipality-level, less and less
data per stratum.

Colombia (2003-2011)

Syria (2011-2013)
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EM-like algorithm

E step:

n̂
(t)
01010 =

∑T
s=1 µ

(s)
01010∑T

s=1

(
µ
(s)
01000 + µ

(s)
01010 + µ

(s)
01100 + µ

(s)
01110

)n(t)
01++0.

M step:

Fit log-linear model to completed data {n
(t)
k }k6=00000,00010,00100,00110.

Bayesian version [Dominici, 2000].
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Sensitivity Analysis: Choice of µinactive, τ
2
inactive
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Posterior Predictive Checks: AR1-ZS
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Posterior Predictive Checks: M-ZM
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Generate data from M-ZM: Coverage
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Generate data from M-ZS: Coverage
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Generate data from AR1-ZS: Coverage
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Generate data from M-ZM: Bias
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Generate data from M-ZS: Bias
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Generate data from AR1-ZS: Bias
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Generate data from M-ZM: Interval Width
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Generate data from M-ZS: Interval Width
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Generate data from AR1-ZS: Interval Width
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Continuous Model Expansion

log
(
µ
(t)
k

)
= λ0t + λ1,tk1 + ... + λ6,tk6+∑

j,j′∈NGOs

ωNGOkjkj′ +
∑

j,j′∈govts

ωgovtkjkj′ +
∑

j∈NGOs,j′∈govts

ωmixkjkj′

ωj,j ′ ∼ N
(
ωNGO,σ2

NGO

)
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Continuous Model Expansion: 3-way log-linear interactions

Population heterogeneity ⇒ higher-order interactions.

Story for list cooperations?
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Continuous Model Expansion: 3-way log-linear interactions

A Story:
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Continuous Model Expansion: 3-way log-linear interactions

Cauchy priors - regularization [Gelman et al., 2008]

Exchangeable based on NGO/govt
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